

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

May 20, 1998

Mr. Mark Neely North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Neely:

Enclosed is the <u>April 1998</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92.26. 96-0.96

There has been no amending activities for the month of April at the McGuire Ranch Site.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3350.

Sincerely,

Larry L. Lake Environmental Coordinator

cc: R.C. Sherwood

MAY 20 '98

O RK O LR _ XI FR D TW C KD O JH O PG D SW 🖸 JS D TD D ALL STAFF **O** FILE O SOARD

96-096

MONTH OF APRIL 1998

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1-4	420	1.30 Inches
5 - 11	440 Yds.	.45
12 - 18	380	. 0
19 - 25	460	.70
26 - 30	320	.10
	2020 3	2.55 Inches
	Yds.	

The total number of treated acres to date = 138.00 _____acres

Water Monitoring and Testing

No samples collected for the month of April.

Deposition

There has been no amending activities for the month of April at the McGuire Ranch Site. There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 4/5/98, 4/11/98 & 4/25/98. Each load contained 10 cubic yards.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of April 1998

DAY			RAINFALL
1.		·	0
2.		·	0
3.	· .		.25
4.			1.05
5.			.10
• 6.			.25
<u> </u>			0
8.			0
9.			.10
10.			0
11.	*		<u>N/A</u>
12.			<u>N/A</u>
13.			0
<u>14.</u>			<u>N/A</u>
<u> </u>			<u>N/A</u>
16.			<u>N/A</u>
<u> </u>			<u>N/A</u>
18			<u>N/A</u>
19			<u>N/A</u>
20.			.10
21			.15
22			0
23			00
24			.45
25			<u>N/A</u>
26.			N/A
27			0
<u>28.</u>		;	.10
<u>29.</u>			0
30.			0.
<u>31.</u>			

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Average Fort Bragg, California COAST 95437-3471 Telephone (707) 964-5651

> D FILE BR

G RT ____ C KO ____

D JH ___ D PG ____

🗆 sw____Q .js ____

O TO ____CI ALLSTAFF

0 80150

6.18-98

June 20, 1998

Mr. Mark Neely North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Neely:

Enclosed is the <u>May 1998</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There has been no amending activities for the month of May at the McGuire Ranch Site.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3350.

Sincerely,

an

Larry L. Lake Environmental Coordinator

cc: R.C. Sherwood

MONTH OF MAY 1998

Monitoring and Reporting Order No. 90-154, Soil Amending Project

,	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 2	320	0 Inches
3 - 9	340 Yds.	.10
10 - 16	480	0
17 - 23	490	2.40
24 - 30	420	0
31	0	0
	2050 3	2.50 Inches
· · · ·	Yds.	

The total number of treated acres to date = 138.00 _____acres

Water Monitoring and Testing

No samples collected for the month of May.

Deposition

There has been no amending activities for the month of May at the McGuire Ranch Site. There has been 40 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 5/3/98, 5/14/98, 5/23/98 & 5/30/98. Each load contained 10 cubic yards.

RWQCB NORTH COAST REGION

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue

Fort Bragg, CA 95437 (707) 964-5651

JUN 18 '93

Rainfall for the Month of <u>May 1998</u>		□ LM □ CJ □ FR	
	RAINFALL	ŪRT_	0 k0
		_0 1H	C3_PG
	0		
	0	_ тр	ED ALL STAFF
	0		
	.10	- <u> </u>	the summer of the second s
	0		
	0	-	
	0		
•	N/A	_	
	N/A	_	
	0	_	
	0	-	
	0	-	
	0	<u> </u>	
	0	-	
	<u>N/A</u>	-	
	<u>N/A</u>	-	
	0	-	
	0	-	
	1.40	-	
	<u> 1.00 </u>	-	
	N/A	-	
	N/A	-	
	0	-	
	0	-	
	0	-	
	0	-	
	0	_	
	0	_	
-	0	-	

DAY
DAY
2.
3.
4.
5.
6
7
8.
9
10.
11.
12.
13
14
15
<u> </u>
17.
19.
20.
21,
22.
22.
24
25.
26.
27.
28
<u>29.</u>
30.
• 31.

Georgia-Pacific Corporation DWQCE NOR Georgia-Pacific West, Inc. A wholly owned subsidiary

JUL 20 '98

90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

July 16, 1998 0.CJ _____ LN PFR D TW Mr. Mark Neely O KD_ 🛈 RT 🗌 North Coast Regional Water D JH CI PG Quality Control Board D JS 5550 Skylane Boulevard, Suite A I ALL STAFF Santa Rosa, CA 95403 D BOARD 96-096 7-21-98 Dear Mr. Neely:

Enclosed is the <u>June 1998</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There has been no amending activities for the month of June at the McGuire Ranch Site.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3350.

Sincerely.

L.Lahe Sami

Larry L. Lake Environmental Coordinator

cc: R. Holen R.C. Sherwood

MONTH OF JUNE 1998

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 6	280	0 Inches
7 - 13	350 Yds.	0
14 - 20	440	0
21 - 27	490	0
28 - 30	420	0
	1980 3	0 Inches
	Yds.	

The total number of treated acres to date = 138.00 _____acres

Water Monitoring and Testing

No samples collected for the month of June.

Deposition

There has been no amending activities for the month of June at the McGuire Ranch Site. There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 6/7/98 & 6/23/98. Each load contained 10 cubic yards.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of June 1998

DAY	_	RAINFALL
1.		0.
2.	•	0
3.		0
4		0
5,		0
6.		0
7.		0
8.		0
9.		0
10.		0
11		0
12.		0
13		0
14,		0
15		0
16		0
17		0
18		0
<u> </u>		0
20	I	0
21		0
22		0
23		0
24		0
25		0
26		0
27		0
28,		0
29		0
30		0
31		

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

August 14, 1998

Mr. Mark Neely North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Neely:

Enclosed is the <u>July 1998</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There has been no amending activities for the month of July at the McGuire Ranch Site.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3350.

Sincerely,

Larrý L. Lake Environmental Coordinator

cc: R. Holen R. Sherwood

AUG 17 '98

96-096

MONTH OF JULY 1998

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	McGuires	_Details/Inches
1 - 4	120	0
5 - 11	440	0
12 - 18	280	0
19 - 25	470	· 0
26 - 31	420	0
	1730 cu/yds	0 Inches

The total number of treated acres to date = 138.00 acres

Water Monitoring and Testing

No samples collected for the month of July.

Deposition

There has been no amending activities for the month of July at the McGuire Ranch Site. There has been 40 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 7/5/98, 7/13/98, 7/19/98 & 7/26/98. Each load contained 10 cubic yards.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of July 1998

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DAY	RAINFALL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c} 27. \\ 28. \\ 29. \\ 30. \\ \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} $		
28. 0 29. 0 30. 0		
<u> </u>		
300		
0		
	31,	0

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary RWQCB NORTH CCAStest Redwood Avenue REGIOFort Bragg, California 95437-3471 SEP 2 4^T98^{phone} (707) 964-5651

September 21, 1998

Mr. Mark Neely North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

 Image: Margin Barlow
 Image: Akge

 Image: Constraint Barlow
 Image: Akge

 Image: Constraint Barlow
 Image: Constraint Barlow

 Image: Constraint Barlow
 Image: Constraint Barlow<

Dear Mr. Neely:

Enclosed is the <u>August 1998</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There has been no amending activities for the month of August at the McGuire Ranch Site.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3350.

Sincerely,

Farry L. L.

Larry L. Lake Environmental Coordinator

cc: R. Holen R. Sherwood

MONTH OF AUGUST 1998

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	McGuires	_Details/Inches
1 - 8	340	0
9 - 15	240	0
16 -12	220	0
23 - 29	320	0
30 - 31	120	0
	1440 cu/yds	0 Inches

The total number of treated acres to date = 138.00 _____acres

Water Monitoring and Testing

No samples collected for the month of August.

Deposition

There has been no amending activities for the month of August at the McGuire Ranch Site. There has been 40 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 8/4/98, 8/12/98, 8/19/98 & 8/29/98. Each load contained 10 cubic yards.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of August 1998

DAY
1
2.
3.
4.
5,
<u> </u>
7.
8.
9.
10
11.
12.
13.
14
15
<u> 16. </u>
17
18
19.
20.
21_
<u>21.</u> <u>22.</u>
23
24
25.
26,
27
28
<u> 29. </u>
31

RAINFALL
<u> </u>
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
· 0
0
0
0
0
0
0

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

October 23, 1998

Mr. Mark Neely North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Neely:

Enclosed is the <u>September 1998</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There have been no amending activities for the month of September at the McGuire Ranch Site.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3350.

Sincerely.

an

Larry L. Lake Environmental Coordinator

cc: R. Holen R. Sherwood

MONTH OF SEPTEMBER 1998

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	McGuires	_Details/Inches
1 - 5	130	0
6 - 12	110	0
13 - 19	180	0
20 - 26	220	0
27 - 30	80	0
	740 cu/yds	0 Inches

The total number of treated acres to date = 138.00 _____acres

Water Monitoring and Testing

No samples collected for the month of September.

Deposition

There has been no amending activities for the month of September at the McGuire Ranch Site. There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 9/13/98 & 9/19/98. Each load contained 10 cubic yards.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of September 1998

DAY		RAINFALL
1.		0
2.	-	0
3.		0
4.	•	0
5.	-	0
6.	•	0
7.	· · · ·	0
8,		0
9,		0
10.		0
11,	•	0
12.		0
13	· .	0
14		0
15.		0
<u> 16. </u>		0
17		0
18.		0
19	. •	0
20.		0
21.		0
22.		0
23		0
24		0
25.		0
26		0
27		0
28		0
29		0
30.		0
31.		0

	Georgia-Pacific Corporation HWOCB NORTH COASD West Redwood Ave Georgia-Pacific West, Inc. Fort Bragg, California
<u>G</u> P	Georgia-Pacific West, Inc. HEGION Fort Bragg, California
	A wholly owned subsidiary NOV 1 6 99 elephone (707) 964-:
November 13, 1998	0 LM 0 KK
May Otta Jac Wath	
Mr. Charles Vath	0 FR 0 TW
North Coast Regional Water	X RT KO
Quality Control Board	D JH D PG
5550 Skylane Boulevard, Suite	A D swD is
Santa Rosa, CA 95403	DTD D ALL STAFF

Enclosed is the <u>October 1998</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

Amending activities have taken place during the month October, with approx. 12 acres during this period. Amending activities have been discontinued and will continue to stockpile for the winter months.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3350.

Sincerely,

Larry L. Lake Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF OCTOBER 1998

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 3	60	0 Inches
4 - 10	200 Yds.	0
11 - 17	120	0
18 - 24	80	0
25 - 31	100	.25
	560 3	.25 Inches
	Yds.	

The total number of treated acres to date = 150.00 acres

Water Monitoring and Testing

No samples collected for the month of October.

Deposition

Amending activities are completed, with winter stockpiling now in process. Total acreage amended during the month of October was 12 acres. All of the amending activities were in field #12 for the 1998 season.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of October 1998

DAY	·		RAINFALL
1.			N/A
2,	_		N/A
3.			<u>N/A</u>
4.	_		<u>N/A</u>
5.	-	:	<u>N/A</u>
6,	_		<u> </u>
7.	_		<u>N/A</u>
8.			<u>N/A</u>
9.	_		<u>N/A</u>
10			N/A
11.			<u>N/A</u>
12			<u>N/A</u>
13			<u>N/A</u>
<u> </u>			<u>N/A</u>
<u> </u>			<u> </u>
<u> 16. </u>			<u>N/A</u>
17			<u>N/A</u>
18			<u>N/A</u>
19			N/A
20	•		<u>N/A</u>
21			N/A
22			<u>N/A</u>
23.			<u> </u>
24		· .	N/A
25			<u>N/A</u>
26.			<u>N/A</u>
27			<u>N/A</u>
28			<u>N/A</u>
29.			N/A
30			
31.			<u>N/A</u>

DAY
<u> </u>
2.
3.
4.
5.
6.
7.
8.
9.
10
<u>11.</u>
12.
13.
<u> </u>
15.
16.
17.
18,
19.
20.
21.
22.
23.
24
25.
26.
27.
28.
29.
30.
31.

	RWQCB NORTH COAST
	Georgia-Pacific Corporation REGION
	90 West Redwood Avenue
	Georgia-Pacific West, Inc. A wholly owned subsidiary 05437-3471
· ·	Telephone (707) 964-5651
December 16, 1998	0010
	0 FR 0 KD
Mr. Charles Vath	M RT Q PG
North Coast Regional Water	
Quality Control Board	
5550 Skylane Boulevard, Suite	eA USW 0 ALLSTAFF 96-096
Santa Rosa, CA 95403	
Dear Mr. Vath:	0 <u>12-22.98</u> BP

Enclosed is the <u>November 1998</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

Amending activities are completed for 1998. Seeding of the amended areas was completed in the first part of November, with winter stockpiling now in effect.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3350.

Sincerely,

any & Lake

Larry L. Lake Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF NOVEMBER 1998

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall	
Week of	North Area	Details	
1 - 7	30	1.00 Inches	
8 - 14	0 Yds.	3.15	
15 - 21	20	.65	
22 - 28	. 0	1.10	
29 - 30	0	.25	
	50 Yds	6.15 Inches	

The total number of treated acres to date = 150.00 acres

Water Monitoring and Testing

No samples collected for the month of November.

Deposition

Amending and seeding activities are completed, with winter stockpiling now in process. There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 11/12/98 & 11/19/98. Each load contained 10 cubic yards.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of November 1998

DAY		RAINFALL
1.		<u> </u>
2.	•	N/A
3.		.25
4.		N/A
5.		N/A
6.		N/A
7.		.75
8.		.25
9.		N/A
10		N/A
	•	N/A
12.		N/A
, 13.		.30
14.		2.60
15.		.50
16.		N/A
17.		N/A
18.		.15
19.		N/A
20		N/A
21		N/A
22.		1.10
23		N/A
24	· .	N/A
25,		N/A
26.		N/A
27		N/A
28.		N/A
29.		N/A
		.25
31.		N/A

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary REGIONWest Redwood Avenue Fort Bragg, California JAN 205487-3471 Telephone (707) 964-5651

January 15, 1999

Mr. Charles Vath North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

O RK ____ OLM_ ū <u>ш</u> КD ____ D FR ____ D PG .___ ART ____ _____JS ____ D SW___ D ALL STAFF 96-096 DTD ____ BOARD 1-21.9 D_BP

Dear Mr. Vath:

Enclosed is the <u>December 1998</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There have been no amending activities for the month of December.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3350.

Sincerely,

Lang L. Loke

Larry L. Lake Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF DECEMBER 1998

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 5	0	1.05 Inches
6 - 12	0 Yds.	.85
13'- 19	0	1.10
20 - 26	0	0
27 - 31	0	. 0
	0 Yds	3.00 Inches

The total number of treated acres to date = 150.00 acres

Water Monitoring and Testing

No samples collected for the month of December.

Deposition

No amending activities for the month of December. There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 12/13/98 & 12/24/98. Each load contained 10 cubic yards.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of December 1998

DAY		RAINFALL
1.		·N/A
2		.80
3.		.25
4.		N/A
5.		.25
6.		N/A
7.		N/A
8.		.85
9		N/A
10.		N/A
11.		<u>N/A</u>
12.		<u>N/A</u>
13.	, •	1.1
14.		<u>N/A</u>
15.		<u>N/A</u>
<u> </u>		<u>N/A</u>
17.		<u>N/A</u>
18		<u>N/A</u>
<u> </u>		<u>N/A</u>
20	·	<u>N/A</u>
21		<u>N/A</u>
<u>22.</u>		<u>N/A</u>
23,		<u>N/A</u>
24.		<u>N/A</u>
25		<u>N/A</u>
26		<u> </u>
27		<u> </u>
28.		<u>N/A</u>
29		<u>N/A</u>
30.		<u> </u>
31.		<u>N/A</u>

_1

Georgia-Pacific Corporation REGION

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

February 22, 1999

Mr. Charles Vath North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

DINK 0 DFR **D KO VORT** D P6 DJH 2.0 D ALL STAFF 010 D'BOARD 0 _2.24-99 Å

Dear Mr. Vath:

Enclosed is the January 1999 Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There have been no amending activities for the month of January.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

oug

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF JANUARY 1999

Monitoring and Reporting Order No. 90-154, Soil Amending Project

-	Ash Deposited	Rainfall	
Week of	North Area	Details	
1 - 2	30	.00 Inches	
3 - 9	140 Yds.	.00	
10 - 16	150	1.26	
17 - 23	420	3.28	
24 - 30	410	1.20	
	1150 Yds	5.74 Inches	

The total number of treated acres to date = 150.00 acres

Water Monitoring and Testing

No samples collected for the month of January.

Deposition

No amending activities for the month of January. There has been 10 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul date was 1/20/99. The load contained 10 cubic yards.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue

Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of January 1999

DAY			RAINFALL
1.			.00
2.			00
3.	· ·		.00
4.			.00
5.			.00
6			.00
7.	`		.00
8.			.00
9.	· .		.00
10.		·	.00
11.		·	.00
12.			.00
13	·		.00
14.		7	.10
15			.47
16.		4	.69
17.		·	.53
18.			.39
19			.25
20, ·		-	.33
21		•	.30
22			.63
23.		·	.85
24		·	.00
25.		-	.00
26			.23
27.		-	.00
28		-	.00
29.			.00
30,		-	.00
31.		-	.97
		-	

GP March 16, 1999	RWOCB NORTH COAST Georgia-Pacific Corporation Georgia-Pacific West, IMAR 12 '99 A wholly owned subsidiary	90 West Redwoo Fort Bragg, Cal 95437-3471 Telephone (707)	lifornia
Mr. Charles Vation			
North Coast Kegional Water	D 1H D 1S	•	
Quality Control Board	D SW D ALL STAFF		
5550 Skylane Boulevard, Suite		96-096	<u> </u>
Santa Rosa, CA 95403	0 <u>3-12-99</u>		V ²
Dear Mr. Vath:			

Enclosed is the February 1999 Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There have been no amending activities for the month of February.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF FEBRUARY 1999

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	<u>North Area</u>	Details
1 - 6	300	2.01 Inches
7 - 13	240 Yds.	4.65
14 - 20	240	3.61
21 - 27	270	3.28
28		0.99
	1050 Yds	14.54 Inches

The total number of treated acres to date = 150.00 acres

Water Monitoring and Testing

No samples collected for the month of February.

Deposition

No amending activities for the month of February. There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 2/4/99 and 2/24/99. Each load contained 10 cubic yards.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of February 1999

DAY]
1.				
2.				.
3				
4.				
5,				
6.				
8.				
9.	2 			. <u></u>
10.				<u></u>
<u>11.</u>				
<u> </u>				
<u>13.</u>				
<u>15.</u> <u>14.</u>				
15.				
16.				
10.				
18		1		
<u> 10 </u>				
20.				<u> </u>
				·····*·····
2]				
22.	•			
23.				
24.				
25,				
26.				
27.				
28			~	
				·
<u>30</u>				
31				

RAINFALL
.00
.00
.03
.05
.00
1.93
1.37
.61
1.83
33
00
00
.51
.21
.00
1.30
.83
.04
.48
.61
.20
61
.60
1.01
.11
.14
.99
.00
.00
.00
<u>~~</u>

RWQCB NORTH COAST REGION Georgia-Pacific Corporation Georgia-Pacific West, Inc. A wholly owned subsidiary DLM____ RK__ DCJ___ RK__ DFB DKD

90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

April 15, 1999

Mr. Charles Vath North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403 D LM _____ HK ____ Telephone (hD CJ ____ D D FR ___ D KD ____ D FR ___ D PG ____ D JH ___ D JS ___ D SW ___ D ALL STAFF D TD ___ D BOARD D ____ 4.20.99 96-096 BP

Dear Mr. Vath:

Enclosed is the <u>March 1999</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There have been no amending activities for the month of March.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely, ua

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF MARCH 1999

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 6	270	.76 Inches
7 - 13	150 Yds.	1.63
14 - 20	300	1,47
21 - 27	210	4.09
28 - 31	160	1.22
	1090 Yds	9.17 Inches

The total number of treated acres to date = 150.00 acres

Water Monitoring and Testing

No samples collected for the month of March.

Deposition

No amending activities for the month of March.

There has been 10 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul date was 3/5/99.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of March 1999

DAY			RAINFALL
Į	_		.00
2.	•••		00
3.	**		.66
4	~~~	ч. Т	.10
<u> </u>	*		.00
6,			.00
7	**		.00
8.	÷		1.07
9.	_		.51
10	•		.05
<u> </u>	,		.00
12.	-		.00
13	~		.00
14	•		1.34
<u> </u>			.03
16	м		.00
17.			.00
<u> 18. </u>			.00
19			.00
20			.10
21			05
22			.22
23			.62
24.			2.93
25.			
26			.00
27.			00
28			.00
29.			.16
30.		,	.72
31.			.34

Georgia Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

> 90 West Redwood Aven Fort Braggy CATHCOAST 95437-3471 VCION Telephone (707) 964-5651

> > LAY 17 '99

Oi

May 13, 1999

Mr. Charles Vath North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Vath:

Q LM ວຍ 1.1. VIII IN 11. A.S. n RC @ ₩ 0.5 DSW CI ALL STYL CI BOARD

Enclosed is the April 1999 Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26. 96.096

There have been no amending activities for the month of April.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF APRIL 1999

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall	
Week of	North Area	Details	
1 - 3	90	.00 Inches	
4 - 10	220 Yds.	2.23	
11 - 17	130	.72	
18 - 24	180	.00	
25 - 30	210	.02	
	830 Yds	2.97 Inches	

The total number of treated acres to date = 150.00 acres

Water Monitoring and Testing

No samples collected for the month of April.

Deposition

No amending activities for the month of April. There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 4/3/99 and 4/28/99.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of April 1999

DAY		RAINFALL
1.		00
2.		.00
3.		.00
	-	.00
5.		.42
6.	_	09
7.	· · · · ·	.00
8.	-	1.21
9.	- -	.02
10.	AT	49
11.		
12.	-	.00
13.	-	00
14.		
.15.	 	.00
16.	_	.00
17.		.00
18,	-	00
19	_	.00
20	··· ·	00
21		.00
22	-	.00
23.	_	.00
24		00
25.		.00
26.		.02
27,	-	.00
28.	-	.00
29.	-	.00
30.	***	.00
31.	-	.00
	-	

RWOCE NORTH COAST REGION

WAY 17 99

ວເປ	_0
DFR	KD
ORT	_0.96
	QAS
	_o hlijihh
	dixos s
-m	-

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen

Operations Manager

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue ~Rapt Bragg. California 95437-3471 Telephone (707) 964-5651 5 00

June 8, 1999

Mr. Charles Vath North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

O LM ____ O RK 001_0 DfR D Kh XORT. D PG O JH C jš C) ALL STAR DTO O BOARD D BP 6-16-99

NC-

Dear Mr. Vath:

Enclosed is the May 1999 Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There have been no amending activities for the month of May.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

bu G

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF MAY 1999

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1	90 -	.01 Inches
2 - 8	150 Yds.	.37
9 - 15	180	.00
16 - 22	450	.10
23 - 29	400	.00
30 - 31	0	.00
·	1270 Yds	.48 Inches

The total number of treated acres to date = 150.00 acres

Water Monitoring and Testing

No samples collected for the month of May.

Deposition

No amending activities for the month of May.

There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 5/9/99 and 5/31/99.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of May 1999

DAY	RAINFALL
<u> </u>	.01
2	.14
3	
4	.00
5.	.00
6,	.00
7.	.00
8	.00
9.	.00
10.	.00
<u> </u>	.00
12.	.00
13	.00
14	.00
15.	.00
16.	.00
17.	.00
18.	.10
19.	.00
20	.00
21	.00
22	.00
23.	.00
24.	.00
25	.00
26.	.00
27.	.00
28	.00
29	.00
30.	.00
31.	.00

HWOCH NORTH TOAST

JIN 15 199

OLM__C. AK_ 00.....0 0 FR ____ 0 KD __ 0 AT ____ 0 PG ____ 0.1H ____0.6 ____ OSW___O ALLSDAFF 0 TO ____ 0 BOARD 0

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Konald G. Holen Operations Manager

RWQCB NORTH COAST Georgia-Pacific Corporation REGION

Georgia-Pacific West, Inc. A wholly owned subsidiary JUL 14 '99 90 West Redwood Avenue Fort Bragg. California 95437-3471 Telephone (707) 964-5651

July 13, 1999

Mr. Charles Vath North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

ວພ____ວ DFR __ ____ KO BRT. D P6 1 D JS п лн D MLSTRF DSW___ D BOARD DTD D: 7-15-99

Dear Mr. Vath:

Enclosed is the June 1999 Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There have been no amending activities for the month of June.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF JUNE 1999

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 -5	240	.06 Inches
6 - 12	240 Yds.	.00
13 - 19	180	.16
20 - 26	90	.00
27 - 30	80	.00
	830 Yds	

The total number of treated acres to date = 150.00 acres

Water Monitoring and Testing

No samples collected for the month of June.

Deposition

No amending activities for the month of June.

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 6/7/99, 6/14/99 and 6/28/99.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437

(707) 964-5651

Rainfall for the Month of June 1999

DAY	,	RAINFALL
1.		.06
2.		00
3.		.00
4.		00
5		.00
6.		.00
7.		.00
8.		.00
.9.		.00
10.		00
11.		.00
12.		0
13.		00_
14	•	.06
15		10
16		.00
17		.00
<u>18. ·</u>		00
19.		00
20		.00
21.		.00
22		00
23.	· ·	.00
24		.00
25.		00_
26.		00
27		.00
28		.00
29		.00
30.		.00
31		.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

onald G. Holen

Operations Manager

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg. California 95437-3471 Telephone (707) 964-5651

August 16, 1999

Mr. Charles Vath North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Vath:

Enclosed is the July 1999 Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There have been no amending activities for the month of July.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

loua

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

a	NORTH COAST REGION
,	NUG 18'97
	$DAM_{RK} = DRK_{T}$ $DGL_{RK} = D =$
Я	Recid from ALW 10-7-99

AWOCB

MONTH OF JULY 1999

Monitoring and Reporting Order No. 90-154, Soil Amending Project -

	Ash Deposited	Rainfall
Week of	North Area	Details
1 -3	90	.00 Inches
4 - 10	90 Yds.	.00
11 - 17	150	.00
18 - 24	90	.08
25 - 31	90	.02
ж. С.	510 Yds	.10 Inches

The total number of treated acres to date = 150.00 acres

Water Monitoring and Testing

No samples collected for the month of July.

Deposition

No amending activities for the month of July. There has been 40 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 7/6, 7/15, 7/25, and 7/31/99.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of July 1999

DAY	
1.	
2	
3,	
4.	
<u> </u>	
6	
	3
8.	
9	
10	
<u> </u>	
12.	
13.	
14	
15	
16.	
17.	
18.	
19	
20	
21.	
22	
23	
24.	
25.	
26.	
27	
28.	
29	
31.	

RAINFALL .00 .00 .00 .00 .00 <u>.00</u> .00 <u>.00</u> .00 .00 ,ŐØ, .00 .00 .00 00 00 00 ,00 00 00 .00 .00 <u>.03</u> .05 .00 .00 .00 02 <u>• ,00</u> .00 00

HWQCB NORTH COAST

AUG 1 8 '99

01M	D RK
ວພ	0
OFR	D KD
DAT	O PG
D JH	0.5
D SW	D ALLSTAT
DTG	CRADE D
0	

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and properties of the knowing violations."

Ronald G. Holen Operations Manager

Georgia-Pacific Corporat BWQCB NORTH COAST Georgia-Pacific West, Inc. PEGION A wholly owned subsidiary SEP 17 '99

90 West Redwood Avenue Fort Bragg, Galifornia 95437-3471 Telephone (707) 964-5651

BP (15) 10/4/99

September 15, 1999 OLM___ORK Mr. Charles Vath D FR ____ D KD ____ North Coast Regional Water 0 RT ____ 0 PG ____ DE FAW Quality Control Board Q JH ____ Q JS ____ 5550 Skylane Boulevard, Suite A O SW____O ALL STAFF Santa Rosa, CA 95403 G TO ... BOARD 0 <u>9.20.99</u>

Dear Mr. Vath:

Enclosed is the August 1999 Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

There have been no amending activities for the month of August.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

loug the

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R Holen R. Sherwood (Portland)

. .			EWQCB NORTH COAST BEGION
~. .			SEP 17 '99
		GEORGIA-PACIFIC McGUIRE RANCH REPORT	• • •
	· · · ·	MONTH OF AUGUST 1999	O LMO RK O CJO O FRO KD O RTO P6
·	Monitoring and R	eporting Order No. 90-154, Soil Amending Project	D JH D JS D SW D ALL STAFF D TD D BOARD
		Ash Deposited	Rainfall
	Week of	North Area	Details
	1-7	130	00 Inches
	8 - 14	180 Yds.	.00
	15 - 21	180	.00
	22 - 28	90	.00
	29 - 31	80	.00
	•	660 Yds	.00 Inches

The total number of treated acres to date = 150.00 acres

Water Monitoring and Testing

No samples were required for the month of August.

Deposition

No amending activities for the month of August. There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 8/8 and 8/26/99.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

4

Rainfall for the Month of August 1999

DAY	RAINFALL
1.	.00
2.	.00
3	.00
4	.00
5.	.00
6,	.00
7	.00
8.	.00
9.	.00
10.	.00
11.	.00
12,	.00
13.	.00
14.	.00
15.	.00
<u> 16. </u>	.00
17	.00
18.	.00
19	.00
20	.00
<u>21.</u>	.00
22.	.00
23	.00
24	.00
25	.00 ·
<u>26.</u>	.00
27	.00
28	.00
29	.00
30.	.00
31.	00
" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen Operations Manager GEORGIA PACIFIC SOM

AMENDMEN

RWOCB Georgia-Pacific Corp**dOIITH COAST** PFGION Georgia-Pacific West, Inc. A wholly owned subsidia**GT 15 5**3

(AL) 11/02/99

OLM

🛯 CJ ___

GRW

OJH_

GS₩ .

OFR___OKO

DRK

DPG

0.5

DITD_____ BOA?D D_______ BOA?D

D ALL STAFF

0 DN

90 West Redwood Avenue Fort Bragg. California 95437-3471 Telephone (707) 964-5651

Acu

October 13, 1999

Mr. Charles Vath North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Vath:

Enclosed is the <u>September 1999</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

10 acres were amended during the month of September.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF SEPTEMBER 1999

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 4	210	.00 Inches
5 - 11	460 Yds	.06
12 - 18	510	.05
19 - 25	420	.00
26 - 30	150	.00
	1750 Yds	11 Inches

The total number of treated acres to date = 160.00 acres

Water Monitoring and Testing

No samples were required for the month of September.

Deposition

10 acres were amended during the month of September. There has been 40 cubic vards of sludge hauled from the Mendocino City Community Services District. Haul dates were 9/2, 9/8, 9/19, and 9/26/99.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of September 1999

DAY	RAINFALL
· 1	.00
	.00
3	.00
4	.00
5.	.00
6.	.00
7	.00
8.	.03
9.	02
10.	.01
<u> </u>	.00
12	.00
13.	.02
14.	.02
15.	.00
16.	.01
17	.00
18.	.00
19.	.00
20	00
21	00
22	.00
23	.00
24	.00
25.	.00
26.	.00
27.	.00
28	.00
29	.00
30	.00
31.	.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen

Operations Manager

GEORGIA P	CIFIC SOI	WATER ALITY DONTROL BOARD REGION 1	•
	Georgia-Pacific Corporation	on ·	
	- 6 •	👘 🕪 🚺 🕺 📲 90 West Redwood Avenue	0
	Georgia-Pacific West, Inc.	Fort Bragg. California	
	A wholly owned subsidiary	95437-3471	
November 11, 1999		BK (0) RK Telephone ("()") 964-363	1
	Γ		
Mr. Al Wellman	Ε	DFR 10 KD	
North Coast Regional Water		DRT DPG	
Quality Control Board			
5550 Skylane Boulevard, Suite		D \$₩ D	
Santa Rosa, CA 95403		D DREPLY	
Sama Rosa, CA 95405	-	" STAPF CHANE 11-16-99	
Dear Mr. Wellman:	(A	L) 12/3/99	

Enclosed is the <u>October 1999</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

The amending process was completed this month.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

٠.

If you have any questions, please contact me at 961-3353.

Sincerely,

Joag H ん ertmay

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF OCTOBER 1999

Monitoring and Reporting Order No. 90-154, Soil Amending Project

·	Ash Deposited	Rainfall
Week of	North Area	- Details
1 - 2	40	00 Inches
3 - 9	240 Yds	02
10 - 16	230	00
17 - 23	120	.00
24 - 30	140	1.70
31	60_	00
	830 Yds	1 72 Inches

The total number of treated acres to date = 160.00 acres

Water Monitoring and Testing

No samples were required for the month of October.

Deposition.

The amending project was completed during the month of October. There has been 40 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 10/3, 10/9, 10/17 and 10/24.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of October 1999

•

DAY		RAINFALL
1.		.00
2		.00
3.		.00
4	•	.00
5.		.00
6.		
7		.00
8		.00
9		.00
10		.00
11		.00
12,		.00
13		.00
14		.00
15		.00
16		00
17		00
18		.00
		00
20		.00 .
21		.00
22		.00
23		.00
24		.00
25		.00
26.		.00
27		.93
28		
29		
30		.00
31	·	00

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen

Operations Manager

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

December 13, 1999

Mr. Al Wellman North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Wellman:

Enclosed is the <u>November 1999</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-20 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Jourg Sectiment

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF NOVEMBER 1999

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 6	120	.00 Inches
7 - 13	300 Yds.	3.17
14 - 20	210	3.17
21 - 27	0	.46
28 - 30	0	1.98
31	· · · · · · · · · · · · · · · · · · ·	.00
	630 Yds	8 78 Inches

The total number of treated acres to date = 160.00 acres

Water Monitoring and Testing

Samples were taken but not preserved properly and therefore invalid.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 11/7, 11/18, and 11/28.

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. Jam aware that there are significant penalties for submitting false information, mcluding the prosedulty of the personment for knowing violations."

Ronald G. Holen Operations Manager

GEORGIA PACIFIC SOIL

Georgia Pacific Corporation Georgia-Pacific West, Inc. A wholiy owned subsidiary

AMENDMENT

90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651 RWQCB NORTH COAST REGION

'99 DEC 29 PM 3 45

Mr. Al Wellman North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, SuiteA Santa Rosa, Ca. 95403

CILM___OFR__ORT__ CJH__OSW__OTD__OKD_ DSE ALW DJS. BL 1/4/00

Dear Mr. Wellman:

Please find enclosed some information that was omitted from the McGuire Ranch November monthly monitoring report. I'm sorry for any inconvenience this may have caused.

Sincerely yours,

Doug Heitmeyer Environmental Coordinator

•	۲	

,

÷

\sim	ŧ					
		DATE	11/30/99	11/30/99	11/30/99	11/30/99
		Location	N. ROAD	S. ROAD	N. POND	S. POND
•		РН	7.4	7.6	7.5	7.5
		CÓD	N/A	N/A	N/A	N/A

4*'

1B 850 JORMEN GEORGIA PACIFIC SOIL AMENDMENT

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg. California 95437-3471 Telephone (~(17) 964-5651

96-096

January 11, 2000

Mr. Al Wellman North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Wellman:

Enclosed is the <u>December 1999</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Jourg Dertmen

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF DECEMBER 1999

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
] - 4	140	.62 Inches
5 - 11	230 Yds.	1.37
12 - 18	270	33
19 - 25	30	.00
26 - 31	30	.00
		.00
	700 Yds	2.32 Inches

The total number of treated acres to date = 160.00 acres

Water Monitoring and Testing

Samples were not taken for COD as there was no flow.

The Ph levels were checked each week. (see attached sheet)

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 12/4, 12/13, and 12/24.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of December 1999

DAY		RAINFALL
1.	•	.30
2.		.32
3.		.00
4.		.00
5.		.00
6.		.20
7.		.06
8.		.00
9.		1.05
10.		.06
		.00
12.		.00
13.		.20
14.		.00
15		.00
16.		.00
17		.01
18		.12
<u> 19. </u>	<i>,</i>	.00
20.		.00
<u>21</u> .		.00
22.		.00
23		.00
24		.00
25.		.00
26		.00
27		.00
28.		.00
29	•	.00
30		.00
31.		00

,

.

.

.

.

•

	-				
	•				
•					-
(-:	÷				
	Location	N. Pond			
 ↓ ↓	Location Date	N. Pond 7-Dec	14-Dec	21-Dec	28-Dec
			14-Dec 7.6	21-Dec 7.5	28-Dec 7.4

Location	S.Pond	ļ		
Date	7-Dec	14-Dec	21-Dec	28-Dec
PH	7.5	7.4	7.3	7.6
COD	N/A	N/A	N/A	N/A

Location	N.Road	· ·		
Date	7-Dec	14-Dec	21-Dec	28-De
PH	7.4	7.6	7,3	7.3
COD	N/A	 N/A	N/A	N/A

	,			
Location	S.Road			
Date	7-Dec	14-Dec	21-Dec	28-Dec
РН	7.6	7.5	7.3	7.5
COD	N/A	N/A	N/A	N/A

• .

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of the and imprisonment for knowing violations."

mel

Ronald G. Holen Operations Manager

R VI Q C B Georgia-Paci**II O R THP O B AG** REGION Georgia-Pacific West, Inc. A wholl O Wife subsidiary 2 20

90 West Redwood Avenue Fort Bragg. Culifornia 95437-3471 Telephone (707) 964-3651

February 14, 2000

Mr. Al Wellman North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403 $\begin{array}{c} \Box LM _ \Box e_J _ \Box FR _ \Box RT _ \\ \Box JH _ \Box SW _ \Box TD _ \Box XD _ \\ \Box JS _ \Box _ 2^{-2.3 - 00} DE \xrightarrow{Pee} ALW \\ AL \exists / \exists 0 / 2000 \end{array}$

Dear Mr. Wellman:

Enclosed is the January 2000 Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order N(2, 22-26) of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353

Sincerely,

long Hertmey

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF JANUARY 2000

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1	0	.23 Inches
2 - 8	180 Yds.	59
9 - 15	. 180	3 19
16 - 22	270	3.32
23 - 29	340	1.18
30 - 31	60	1.14
	1030 Yds	9.65 Inches

The total number of treated acres to date = 160.00 acres

Water Monitoring and Testing

The Ph levels were checked each week. (see attached sheet). Water samples for COD were also taken.

Deposition

There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 1/7 and 1/20.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of January 2000

DAY		RAINFALL
1,	_	.23
. 2.	-	<u>.11</u>
3	-	.00
4.		.42
5.	_	.02
6.	• · ·	.00
7.	-	.00
8.	_	.04
9.	-	.02
10.	_	.24
<u>11.</u>		1.00
12.	-	.02
13	-	36
14.	~	1.09
15.		.46
16.	-	1.20
17.	-	.02
18.	- -	.57
19.		
20.		.09
21.		.64
22.		.00
23.		.46
24		14
25.		.58
26.		.00
27.		00
28.		.00
29.	· · · ·	.00
30.		
31.		.26

.

.

•				
Location	N. Pond			
Date	7-Jan	14-Jan	21-Jan	28-Ja
PH	7.4	7.6	. 7.6	7.5
COD	41 mg/l			

Location	S.Pond			
Date	7-Jan	14-Jan	21-Jan	28-Jan
РН	7.4	7.5	7.4	7.4
COD	25 mg/l			

Location	N.Road					
Date	7-Jan	14-Jan	21-Jan	28-Jan		
РН	7.5	7.7	7.6	7.5		
COD	58 mg/l				· .	

Location	S.Road			
Date	7-Jan	14-Jan	21-Jan	28-Jan
РН	7.3	7.5	7.6	7.4
COD	37 mg/l			

•

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

onald G. Holen

Operations Manager

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

March 16, 2000 Mr. Al Wellman North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Wellman:

Enclosed is the <u>February 2000</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

CRJ CRJ

C) FCR

FJB

RSG

NPO

If you have any questions, please contact me at 961-3353.

Sincerely,

ectmen loug

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland) WATER QUALITY CONTROL BOARD REGION 1

MAR 2 1 2000

🖸 SAW

🗋 KAD

C) TBD

OCI

CTV

- 24-00 JEc./

🖸 CWS

RLT

DSE

JRH

RRK

ЛS

3/30/2000

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF FEBRUARY 2000

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1-5	300	1.00 Inches
6 - 12	300 Yds.	1.15
13 -19	390	2.74
20 - 26	300	4.13
27 -29		2.08
	1290 Yds	11.10 Inches

The total number of treated acres to date = 160.00 acres

Water Monitoring and Testing

The Ph levels were checked each week. (see attached sheet) Water samples for COD were not required this month.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 2/1, 2/15 and 2/25.

WATER QUALITY CONTROL BOARD REGION GEORGIA-PACIFIC WEST, LAGY CWS SAW 90 W. Redwood Avefue CRJ RLT SAW 90 W. Redwood Avefue CRJ RLT KAD Fort Bragg, CA 95431 FCR MAR 2 1 2000 TBD (707) 964-56511 FJB DSE OCI RSG JRH CTV CTV Rainfall for the Month of Februiary 2000 RRK ILS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

(

4	

Location	N. Pond			
Date	3-Feb	9-Feb	17-Feb	24-Feb
РН	7.5	7.6	7.7	7.6
COD				

Location S.Pond Date 3-Feb 9-Feb 17-Feb 24-Feb 7.5 РН 7.6 7.4 7.5 . COD

Location	N.Road			
Date	3-Feb	9-Feb	17-Feb	24-Feb
PH	7.7	7.6	7.6	7.7
COD		· · · ·		

Location	S.Road			
Date	3-Feb	9-Feb	17-Feb	24-Feb
PH	7.4	7.4	7.6	7.5
COD				

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen Operations Manager

96096

Georgia-Pacific Corporation W 308 NORTH COAST Georgia-Pacific West, Inc. REGION A wholly owned subsidiary 'OO Hi R 19

90 West Redwood Avenue
 Fort Bragg. Califòrnia
 95437-3471
 Telephone (707) 964-5651

DSEZALW

April 14, 2000

Mr. Al Wellman North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

DLM_DOJ_DFR_CIRT DJH_DSW_CTL_UK0_ 1-21-00LW (AS) 9/15/2000

Dear Mr. Wellman:

Enclosed is the <u>March 2000</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No 92-26

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

loug

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF MARCH 2000

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1-4	180 ·	.87 Inches
5-11	150 Yds.	1.70
12 - 18	610	13
19 -25	270	.11
26 - 31	180	.00
	1390 Yds	2.81 Inches

The total number of treated acres to date = 160.00 acres

Water Monitoring and Testing

The Ph levels were checked each week and COD samples were taken for the month. (see attached sheet)

Deposition

There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 3/9 and 3/18.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of March 2000

DAY
I,
2.
3.
4
5
6.
7
8,
9.
10
<u> </u>
12
<u> </u>
14.
15.
16
<u> 16. </u>
<u> </u>
19
20.
21
22
23
24
25
26
27
28
29
30
31

.02
.00
68
.02
.00
38
.53
.49
.11
.00
.00
.04
.00
.09
.00
.00
.08
.00
.00
.00
.03
.00
.00
.00
.00
.00
.00
.00
.00

•					
Location	N. Pond		<u> </u>	Į	
Date	2-Mar	9-Mar	16-Mar	24-Mar	30-Mar
РН	7.5	7.4	7.2	7.3	73
COD				17.0 mg/l	· .

.

(

Location	S.Pond					
Date	2-Mar	9-Mar	16-Mar	24-Mar	30-Mar	
РН	7.4	7.3	7.5	7.2	7.3	
COD				45.0 mg/l		

Location	N.Road			·	
Date	2-Mar	9-Mar	16-Mar	24-Mar	30-Mar
РН	7.5	7.6	7.4	7.2	7.4
COD				8.9.mg/l	

Date	2-Mar	9-Mar	16-Mar	24-Mar	30-Mar
РН	7.4	7.5	7.2	7.3	7.4
COD				31.0 mg/l	

t

APR-06-00 THU 11:48 AM

ALENA ANALYTICAL LABORAT FAX NO. 11312

alpha

Alpha Analytical Laboratories Inc. 860 Waugh Lane, H-1, Ukiah, California 95482 e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267 CHEMICAL EXAMINATION REPORT

Page 1 of 2 Georgia-Pacific West, Inc. Date Printed 30 Wost Redwood Avenue 04/05/00 Project No: Fr. Dragg, CA 95437 Actn: Doug Heitmeyer Project Id: Client Client P.O. Send Via Order Number Receipt Date/Time A00032424 03/24/00 03:45PM GPPB P-CARD MAIL METHOD EXTRACTED TEST DATE RESULT UNITS **POL** Order A00032424 consisted of 4 Samples and A Tufftu. Sample 1 Upper Road Sampled: 03/24/00 Sample Type: Aqueoun Sampled By: Heitneyer 10:00 Chemical Oxygen Demand 410.2 04/03/00 8.9 mg/L 1,0 Sample 2 Lower Road Sampled By: Neitmeyer Sample Type: Aqueous Sampled: 03/24/00 10:10 Chemical Oxygen Demand 04/03/00 410,2 31 mg/L 1,0 Sample 3 Upper Ford Sample Type: Aqueous Sompled By: Heitmeyer Sampled: 03/24/00 10:20 Chemical Oxygan Demand 410.2 04/03/00 ng/L 1,3 17 Sample 4 Lower Pond Sample Type: Aqueous Sampled By: Heitmeyer Sampled: 03/24/00 10:30 Chemical Oxygen Demand 410.2 04/03/00 45 mg/L 1.0

PQL = Practical Quantitation Limit ND - None Detected

Brucc L. Gove Laboratory Director

Date Printed: 04/05/00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen Operations Manager

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg. California 95437-3471 Telephone (707) 964-5651

May 10, 2000

Mr. Al Wellman North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Wellman:

Enclosed is the <u>April 2000</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heatmeye

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MAY 1 2 2000 DIA CRJ CRJ C FOR BRLT □ SAW LMF 1 AW

RWQCB

REGION 1

(AL) 9/15/2000

MONTH OF APRIL 2000

<u>.</u>	٧V	Q	C	В	
RE	EG	0	N	1	

DIA

CI SAW CI KAD	

MAY 1 2 2000

Monitoring and Reporting Order No. 90-154. Soil Amending Project

	Ash Deposited	Raintall
Week of	North Area	Details
1	30	00 Inches
2 - 8	120 Yds.	.01
9-15	120	.50
16 -22	170	2.22
23 - 30	. 300	.25
	740 Yds	2.98 Inches

The total number of treated acres to date = 160.00 acres

Water Monitoring and Testing

No water samples were required for the month.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 4/3, 4/14, and 4/22.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

R W Q C B REGION 1

Rainfall for the Month of April 2000

DAY
1.
2.
3.
<u>4.</u> <u>5.</u>
5
6.
7
<u> </u>
9
10
11
12.
13.
<u> </u>
15.
<u> </u>
<u> </u>
18
<u>19.</u> 20.
20.
21.
22.
23
24.
<u> </u>
26
27
28
<u> </u>
30.
<u>31</u>

· · · · · · · · · · · · · · · · ·
<u>RAINFALL</u>
00
.00
.00
.01
00
.00
.00
.00
00
00
.00
.15
.17
.05
.13
.91
1.21
.00
.00
.00
.00
.01
00
.00
.05
00
02
.00
.00
.00
00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen Operations Manager

415 6-096 U

Georgia-Pacific West, Inc. A wholly owned subsidiary

June 13, 2000

Mr. Al Wellman North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Fort Bragg, California 95437-3471 Telephone (707) 964-5651

90 West Redwood Avenue

R W Q C B REGION 1

JUN 1 4 2000

D5-46W

_ 🛄 KAD

🗋 CRJ

SAW ____

🗋 LAM

🗋 RLT

LMF

Dear Mr. Weilman:

Enclosed is the May 2000 Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

bug X eitmen

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R Holen R. Sherwood (Portland)

MONTH OF MAY 2000

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall	
Week of	North Area	Details	
1 - 6	240	.31 Inches	
7 - 13	270 Yds.	1.18	
14 -20	180	1.04	
21 - 27	210	.00	
28 - 31	0	.06	
	900 Yds	2.59 Inches	

The total number of treated acres to date = 160.00 acres

Water Monitoring and Testing

No water samples were required for the month.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 5/2, 5/14, and 5/29.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of May 2000

DAY			
1			
2.			
3			
4			
5.			
6.			
7.			
8.		•	
9			
10.			
<u> </u>			
<u> </u>			
<u> </u>			
15.			
<u> </u>			
17.			
18.			
19.			
20.			
21			
<u>22,</u> 23.			*
<u> </u>			
<u> </u>			
27			
28.			
29.			
30.			
<u>31</u> .			

RAINFALL
.00
.26
.02
.00
.00
03
.03
.74
.08
.30
.03
.00
.00
.12
.16
.76
.00
.00
.00
.00
.00
.00
.00
.00
00
.00
.00
.06
.00
.00
.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen

Operations Manager

Georgia-Pacific West, Inc. A wholly owned subsidiary

July 13, 2000

Mr. Al Wellman North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403 90 West Redwood Avenue Fort Bragg. California 95437-3471 Telephone (707) 964-5651

R W Q C B REGION 1

JUL 1 4 2000

DLAM _____ CRJ ____ FCR ____ ZRLT ____ SAW ____ KAD ____ DLMF ____ ZUW ___ D ___ DE - PALLU 7-20-00 LG

5 9/15/2000

Dear Mr. Wellman:

Enclosed is the June 2000 Monitoring Report for Georgia-Pacific West, Inc. at Eort-Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

ous

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF JUNE 2000

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall	
Week of	North Area	Details	
1-3	210	.00 Inches	
4 - 10	810 Yds.	.41	
11 -17	210	.00	
18 -24	120	.00	
25 -30	120	.00	
	1470 Yds	.41 Inches	

The total number of treated acres to date = 160.00 acres

Water Monitoring and Testing

No water samples were required for the month.

Deposition

There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 6/4/00 and 6/20/00.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of May 2000

DAY	
, 1.	
2	
3.	
4.	
5	
6_	
7.	
8	
10.	
	~
<u>I3.</u>	
· <u>14</u>	
15.	
16.	
17.	
18.	
19.	
2.0	
22.	
23	
24,	
25	
26,	:
27.	
28	
29	
30	
31	

DATIONT
RAINFALL
.00
.00
.00
.00
00
.00
.10
.27
.00
.04
00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
and the second s
.00
00
00_
00
00
.00
00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations,"

Ronald G. Holen Operations Manager

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

August 15, 2000

Mr Al Wellman North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

AUG. 17 2000

RWQCB

REGION 1

Dear Mr. Wellman:

Enclosed is the July 2000 Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

long Dertmeye

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc. R. Holen R. Sherwood (Portland)

MONTH OF JULY 2000

Monitoring and Reporting Order No. 90-154, Soil Amending Project

Week of	Ash Deposited <u>North Area</u>	Rainfall Details	
1		00 Inches	
2 - 8	60 Yds.	.03	
9 - 15	300	.03	
16 -22	150	.02	
23 -31	240	.00	
	780 Yds	.08 Inches	

The total number of treated acres to date = 160.00 acres

Water Monitoring and Testing

No water samples were required for the month.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services . District. Haul dates were 7/3/00, 7/9/00 and 7/17/00.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of July 2000

*
DAY
<u> </u>
2.
<u>. </u>
4.
<u> </u>
6.
7
8.
9.
10.
<u> </u>
12.
13
14.
<u> </u>
16.
17.
18.
<u> </u>
20.
<u>21</u> .
22.
23
24,
25
26
27.
28.
29
30.
31.

RAINFALL
.00
.00
.00
.00
.00
.00
.03
.00
.00
.00
00
.01
.02
.00
.00
.00
.02
.00
.00
.00
.00
.00
.00
.00
.00
.00
. ,00
00,
.00
.00
.00
<u> </u>

.

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holer

Operations Manager

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

September 15, 2000

Mr. Al Wellman North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Wellman:

Enclosed is the <u>August 2000</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.)

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

oug

Doug Heitmever Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

RWQCB REGION 1 SEP 1 9 2000 Du Q FCR (AL) 10/30/00 2 2 2000 4

MONTH OF AUGUST 2000

Monitoring and Reporting Order No. 90-154. Soil Amending Project

	Ash Deposited	Rainfall	
<u>Week of</u>	North Area	Details	
1-5	60	.00 Inches	
6 - 12	60 Yds.	.00	
13 - 19	60	.00	
20 - 26	60	.00	
27 - 31	60	.03	
· ·	300 Yds	.03 Inches	

The total number of treated acres to date = 165.00 acres

The amending project for 2000 is completed. 5 acres were amended during the month of August.

Water Monitoring and Testing

No water samples were required for the month.

Deposition

There has been 30 cubic vards of sludge hauled from the Mendocino City Community Services District. Haul dates were 8/2/00, 8/6/00 and 8/29/00.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of August 2000

DAY
<u> </u>
2.
3
4,
5.
6
7.
8
<u> </u>
<u> 10. </u>
<u> </u>
. 12.
<u>13.</u>
<u> 14. </u>
15.
16.
17.
18.
19.
20.
21.
22
<u>23</u> <u>24</u>
25
26
27.
29
<u> </u>
31.

RAINFALL
00
.00
.00
.00
.00
.00
.00
00.
.00
.00
.00
.00
.00
.00
.00
.00
.00
00
.00
.00
.00
.00
.00
.00
.00
00
.00
00
.02
.00
01

O'AUT

NON S

SEP 19 200

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information. including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen Operations Manager

Georgia-Pacific West, Inc. A wholly owned subsidiary

October 13, 2000

Mr. Al Wellman North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone ("()") 964-5651

🗋 FCR

10-12

DETALW

RWQCB

REGION

C CRJ

OCT 17 2000

Dear Mr. Wellman:

Enclosed is the <u>September 2000</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California. as per our Monitoring and Reporting Program No. 92-26

a6-096

 Я RIT

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

loua

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc. R Holen R. Sherwood (Portland)

MONTH OF SEPTEMBER 2000

Monitoring and Reporting Order No. 90-154. Soil Amending Project

Week of I - 2	Ash Deposited <u>North Area</u> 00	Rainfall Details .37 Inches
3 - 9	160 Yds.	00
10 - 16	-40	02 - 2
17 -23-	60	06
24 - 30	140	00
н -	400 Yds	.45 Inches

The total number of treated acres to date = 165.00 acres

There was no amending during the month of September.

Water Monitoring and Testing

No water samples were required for the month-

Deposition

There has been 40 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 9 4/00, 9/11/00,9/24/00 and 9/30/00.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of September 2000

	DAY	
	1.	
	2.	
	3.	
	4.	
	5	
	6.	
• ••••		
	13	
		<u> </u>
•	15.	
-	16	
-	<u> 16 </u> 17.	
	18.	·
-	19	
·		
··		
	-1.	
	<u></u>	<u>-</u>
Ē	<u>23.</u> 24.	
	25.	
	26.	
	28.	
	29	
	<u> 30. </u>	
	31_	

RAINFALL
.09
.28
.00
.00
.00
.00
.00
<u> </u>
.00
.00
.00
00
.02
.00
.00
.00
00
.00
.00
.00
.04
.02
.00
00
.00
.00
.00
00
.00
.00
.00
⁻⁻ I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.⁻⁻

Ronald G. Holen Operations Manager

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary

96096

90 West Redwood Avenue Fort Bragg. California 95437-3471 Telephone (707) 964-5651

Dear Mr. Wellman:

Santa Rosa, CA 95403

November 15, 2000

North Coast Regional Water Quality Control Board

5550 Skylane Boulevard, Suite A

Mr. Al Wellman

Enclosed is the October 2000 Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26-)

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF OCTOBER 2000

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
t - 7	180	.02 Inches
8 - 14	210 Yds.	00
15-21	210	
22 -28	240	2.12
29 - 31	120	1.77
	960 Yds	4.48 Inches

The total number of treated acres to date = 165.00 acres

There was no amending during the month of October.

Water Monitoring and Testing

No water samples were required for the month.

Deposition

There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 10/12 and 10/21.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of October 2000

DAY	
<u> </u>	
2	
3.	
4	
<u> 4. </u>	
6	
8	Υ
9.	
10.	
<u> </u>	
12	
13.	
14.	
15.	· · · ·
16.	
17.	
18	
19.	
20	
21	· · · · · · · · · · · · · · · · · · ·
22	
23	
24	
25	
26	
27.	
28	
<u> </u>	
<u> </u>	•.
31	

RAINFALL		
00		
.00		
.00		
,00		
00		
.01		
.01		
.00		
.00		
00		
.00		
.00		
.00		
.00		
00		
00		
.00		
<u> </u>		
.04		
49		
04		
.00		
.00		
.00		
.59		
.39		
.00		
1.14		
1.35		
· · · · · · · · · · · · · · · · · · ·		

.

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen Operations Manager

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary

December 12, 2000

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403 90 West Redwood Avenue Fort Bragg. California 95437-3471 Telephone (707) 964-5651

RWQCB

REGION 1

DEC 1 4 2000

C FCR

🗋 KAD

12-18-00 cel

Q

C CRJ

🖸 SAW

RIT

TN MC

Dear Mr. Reed:

Enclosed is the <u>November 2000</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26) 46-096

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Jourg Hertmey

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF NOVEMBER 2000

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 4	150	.00 Inches
5 - 11	360 Yds.	.13
12 - 18	180	49
19 -25	120	.62
26 -30	60	.92
 	870 Yds	2.16 Inches

The total number of treated acres to date = 165.00 acres

There was no amending during the month of November.

Water Monitoring and Testing

No water samples were required for the month.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 11/3, 11/11 and 11/20.

YEAR 2000

NOVEMBER	RAINFALL
1	0
1 2 3	0
4	0
5	0
6	0
7	0
8	0.11
9	0.02
10	0
11	0
12	0
13	0.27
14	0.14 0.08
15	0.08
16 17	0
18	0
19	0
20	Ő
21	0.35
22	0
23	0.08
24	0.19
25	0
26	0
27	0.15
28	0.05
29	0.46
30	0.26
TOTA	0.17
TOTAL	2.17

SeasonTotal

7.51"

•

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of November 2000

DAY
1,
2
3.
4.
5
6.
. 7
7.
9
10.
<u>11</u>
<u>12</u>
13.
<u>14</u> .
15.
16
17.
18.
19,
20
21
22.
23
24
25.
26.
27
28
29.

RAINFALL
.00
.00
.00
.00
.00
.00
.00
.11
.02
.00
.00
_00
.27
.14
.08
.00
.00
.00
.00
.00
.35
.00
.08
.19
.00
.00
.15
.05
,46
.26
.02

Fly Ash Hauled Off Site

Month NOVEMBER

Driver

•
· 7~ 0
1. square
2. Esglund
3.
4. Hulin
5. BRING
6. Laferral
7. Comment
8. Esquent
9. [2.]
10. Dulin
11. Julien
12, horner
13.50
14. 829
15. Esqual
16.20
17. Under
18. Eserent
19.60
20. Esquert
21. Ecolum
22. John
23.
24.
25. Huber
26. Muter
27. Junt
28. Juli
29. Mules
30. 1Am
31. Dule

Yds. 40 4 30 30 3-0-30 30 \mathbf{O} 30 30 30 300. e

Location (1 i N a. 'OD' Rail 5 11 5 ŧ٨ Л ž **()** N •.^ Podest Δ -KIRE 11 1.11 ພາບເ AN ar Zull مہ

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Konald G. Holen

Coperations Manager

Georgia Pacific

Georgia-Pacific West, Inc. A wholly owned subsidiary

90 W. Redwood Avenue Fort Bragg, California 95437-3471

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, Ca. 95403

35403-1072 64

Walashi and Barrilli and Blandard and a balandard

11110

Q.S. POLITASE 🐳

H METER 552511

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary

January 15, 2001 Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

96-096 FCR

90 West Redwood Avenue

Telephone (~07) 964-5651 RWQCB

REGION 1

IAN 17 2001

□ s-··· □ R∋C

Fort Bragg. California

95437-3471

Dear Mr. Reed

Enclosed is the <u>December 2000</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No.92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

oug Sectmeyer

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF DECEMBER 2000

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 2	90	.00 Inches
3 - 9	210 Yds.	00
10 - 16	180	1,80
17 -23	180	.68
24 - 30	210	.04
31	60_	.00
	930 Yds	2.52 Inches

The total number of treated acres to date = 165.00 acres

There was no amending during the month of December.

Water Monitoring and Testing

No water samples were taken during the month as there was no flow.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 12/3, 12/12 and 12/27.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue

Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of December 2000

DAY
1
2.
3.
4
5
6
7
8
9
10
11.
12
13.
14.
15.
16
17
18.
19.
20.
21
22.
24
25
26.
27.
28.
29.
30
31.

<u>RAINFALL</u>
.00
00
00
.00
00
.00
.00
.00
.00
.00
.04
.18
.73
.31
00
.00
.00
.00
.19
.29
.15
.04
.00
.00
.00_
.00_
.00
.00
.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen

Operations Manager

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg. California 95437-3471 Telephone (707) 964-5651

RWQCB

REGION 1

FEB 1 6 2001

2-23-01 LL

CRJ

SAW

FCR

February 13, 2001

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

96-096 C RLT

Dear Mr. Reed:

Enclosed is the January 2001 Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26-

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF JANUARY 2001

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 6	150	.00 Inches
7 -13	360 Yds.	2.14
14 -20	270	.02
21 -27	150	2.36
28 - 31	60	.30
	 990 Yds	4.82 Inches

The total number of treated acres to date = 165.00 acres

There was no amending during the month of January.

Water Monitoring and Testing

No water samples were taken during the month.

Deposition

There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 1/5 and 1/18.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437

(707) 964-5651

Rainfall for the Month of January 2001

DAY		RAINFALL
1.		.00
2.		.00
3,		.00
4		.00
5.		.00
6		.00
7.		00
9.		.48
10.		.74
11.		.11
12.		.00
13.		.04
14.		.02
15		.00
16		.00
17		.00
18		.00
19		.00
20		.00
21		00
22	、 、	00
23		.51
24		.39
25.		.70
26.		.76
27		00
28		.00
29		30
30.		.00
31	•	00

				•	_		
Location	N. Pond						
Date	<u>}</u>	11-Jan	18-Jan	25-Jan			
PH		7,6	7,5	7.5			
COD		n/a	n/a	n/a			

Location	S.Pond			
Date		11-Jan	18-Jan	25-Jan
PH		7.6	7.5	7.6
COD		n/a	n/a	n/a

Location N.Road	Į		
Date	11-Jan	18-Jan	25-Jan
PH	7.5	7.4	7.6
COD	n/a	n/a	n/a

Location	S.Road	Į		
Date		11-Jan	18-Jan	25-Jan
PH		7.4	7.5	7.4
COD	 	n/a	n/a	n/a

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen

Operations Manager

ĉ

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

3-19-010

RWQCB

REGION 1

MAR 1 5 2001

C) CRJ

D RSG

March 14, 2001

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

16-096

Dear Mr. Reed:

Enclosed is the <u>February 2001</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug)

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF FEBRUARY 2001

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
.1 - 3	90	.00 Inches
4-10	240 Yds.	1 27
11 -17	360	2.13
18 -24	180	4.59
25 -28	120	1.34
	990 Yds	9.33 Inches

The total number of treated acres to date = 165.00 acres

There was no amending during the month of February.

Water Monitoring and Testing

Water samples were taken during the month.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 2/10, 2/16 and 2/22.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of February 2001

DAY		RAINFALL
1.		.00
2.		.00
3		.00
4.		00
5		.00
6.	,	.00
7.		.00
8.		.00
9.		.99
10.		.28
11.		1.19
12.		.07
13.		.00
14.		.00.
15.		.00
16.		.08
.17.		.79
18.		.35
19.		
20		2.07
21.		.24
- 22		1.02
23.		.02
24		.34
25.		1.15
26		.19
27		.00
28;		.00
<u> </u>		.00
30,	· · ·	.00
31		.00

Location	N. Pond		[[
Date	1-Feb	8-Feb	15-Feb	26-Feb
РН	7.1	7	7.2	7
COD	n/a	n/a	n/a	9.9 mg/l

;

Location	S.Pond			
Date	1-Feb	8-Feb	15-Feb	26-Feb
PH	7.2	7.1	7.1	7
COD	n/a	n/a	n/a	34 mg/l

Location	N.Road		[
Date	1-Feb	8-Feb	15-Feb	26-Feb
PH	7.4	7.3	7.2	7.3
COD	n/a	n/a	n/a	12 mg/l

Location	S.Road			
Date	1-Feb	8-Feb	15-Feb	26-Feb
PH	7.3	7.2	7.4	7.2
COD	n/a	n/a	n/a	22 mg/l

.

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen

Operations Manager

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary

April 13, 2001

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

RWQCB REGION 1
APR 1 7 2001
D RLT D SAW SKAD
IR M Unrolle

Dear Mr. Reed:

Enclosed is the <u>March 2001</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Voug 9

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF MARCH 2001

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 3	60	.23 Inches
4-10	330 Yds.	2.50
11 -17	270	.02
18 -24	240	1.20
25 -31	240	.16
	1140 Yds	4.11 Inches

The total number of treated acres to date = 165.00 acres

There was no amending during the month of March.

Water Monitoring and Testing

Water samples were taken during the month.

Deposition

There has been 40 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 3/12, 3/18, 3/20 and 3/29.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of March 2001

DAY	
<u>].</u>	
2.	
3	
4	,
5	
. 6.	
7	
8.	
9	
10.	
11	
12.	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	•
28	
29	
30	
31	

RAINFALL
.02
.21
.00
1.96
51
.02
01
.00
.00
.00
.00
00
.00
.00
.00
.01
.01
00
0
.00
00
03
.00
1.17
.00
00
00
.12
04
.00
.00

Location	N. Pond			
Date	8-Mar	15-Mar	22-Mar	29-Mar
PH	7.1	7.2	7.2	7.1
COD	n/a	n/a	n/a	23 mg/l

Location	S.Pond			
Date	8-Mar	15-Mar	22-Mar	29-Mar
РН	7.2	7	7.1	7
COD	n/a	n/a	n/a	42 mg/l

Location	N.Road			
Date	8-Mar	15-Mar	22-Mar	29-Mar
РН	7.2	7.3	7.1	7.2
COD	n/a	n/a	n/a	19 mg/l

Location	S.Road			<u> </u>
Date	8-Mar	15-Mar	22-Mar	29-Mar
РН	7.3	7.1	7.4	7.3
COD	n/a	n/a	n/a	33 mg/l

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen Operations Manager

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg. California 95437-3471 Telephone (707) 964-5651

May 11, 2001

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB REGION 1 5-2101 cer. MAY 1 6 2001 C CRJ SAW ПM

Dear Mr. Reed:

Enclosed is the <u>April 2001</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

MONTH OF APRIL 2001

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Détails
1 - 7	. 00	17 Inches
8-14	210 Yds	.69
15 -21	180	1,25
22 -28	00	.03
29 - 30	60	.00
	450 Yds	2.14 Inches

The total number of treated acres to date = 165.00 acres

There was no amending during the month of April.

Water Monitoring and Testing

Water samples were taken during the month.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 4/8, 4/10, and 4/29.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of April 2001

DAY		RAINFALL
1.	-	.00
2.	••• • •	,00
3.	-	.00
4.	-	.00
5.		.00
6	•	
7.	- 	.69
8.		.00
9	_	.00
10.		00
11	-	.00
12.		.00
13.	-	00
14.		.00
15		.00
16.		00
<u> </u>	_	22
18.	~	.19
<u> 19. </u>		.05
20	-	.75
21		04
22	•	.00
23.		.00
24		.00
25,		00
26,		02
27		.00
28,		01
29.		.00
30,		.00
31.	· ·	.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Konald G. Holen

Operations Manager

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg. California 95437-3471 Telephone (707) 964-5651

262

6-19-01 441

RWQCB

REGION T

JUN 1 4 2001

June 11, 2001

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

96-096

Dear Mr. Reed:

Enclosed is the <u>May 2001</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No 192-2000

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

oug Deitmin

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

MONTH OF MAY 2001

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 5	180	.00 Inches
6 - 12	180 Yds.	.03
13 -19	300	.17
20 - 26	480	.03
27 -31	270	.05
	1140 Yds	.28 Inches

The total number of treated acres to date = 165.00 acres

There was no amending during the month of May.

Water Monitoring and Testing

Water samples were taken during the month.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 5/7, 5/14, and 5/20.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437

(707) 964-5651

Rainfall for the Month of May 2001

DAY	
2.	
3.	
4	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
<u> </u>	
<u> </u>	
<u>15.</u>	
<u> </u>	
17.	
18.	
	۰.
20.	
21.	
22.	¢
23.	
24	
25	
26.	
27.	
28.	
29.	
31.	
water and the second participants of the second sec	

$\begin{array}{c} 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00$	RAINFALL
$\begin{array}{c} .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00$	00
$\begin{array}{c} 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00$.00
$\begin{array}{c} 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00$.00
$\begin{array}{c} 0.00\\$	
$\begin{array}{c} 0.00\\$.00
$\begin{array}{c} .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00$	
$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.03 \\ 0.00 \\ 0.$	
$\begin{array}{c} .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00$	
$\begin{array}{c} .00\\ .00\\ .00\\ .03\\ .00\\ .00\\ .00\\ .00\\$	
$\begin{array}{c} .00\\ .03\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\$	
$\begin{array}{c} 0.3 \\ 0.00 \\ 0.0$	
$\begin{array}{c} 00\\ 00\\ 00\\ 13\\ 04\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00$	
$ \begin{array}{r} 0.00 \\ 1.3 \\ 0.04 \\ 0.00 \\ 0$	
$ \begin{array}{r} 13 \\ 04 \\ 00 \\ 0 \\ $	
.04 .00 .00 .00 .00 .00 .00 .00 .00 .00	
.00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .05 .00 .00 .00	
.00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .05 .00 .00 .00	
.00 .00 .00 .00 .00 .00 .00 .03 .05 .00 .00 .00	
.00 .00 .00 .00 .00 .00 .03 .05 .00 .00 .00	and a state of the
.00 .00 .00 .00 .00 .00 .03 .05 .00 .00 .00	
.00 .00 .00 .00 .03 .05 .00 .00 .00	
.00 .00 .00 .03 .05 .00 .00 .00	
.00 .00 .03 .05 .00 .00	
.00 .03 .05 .00 .00 .00	
.03 .05 .00 .00 .00	
.05 .00 .00 .00	Cardina and a second
<u>.00</u> .00 .00	······································
.00	
.00	
C. KIND CO. C.	
<u></u>	C. KIND CO. C.

 " I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen Operations Manager

Georgia-Pacific West, Inc. A wholly owned subsidiary

July 13, 2001

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

REGION 1 JUL 17 2001 ULAM CRJ KAD RIT SAW KAD FOR RSG CKAD

Dear Mr. Reed:

Enclosed is the <u>June 2001</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

MONTH OF JUNE 2001

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
. 1-2	90	.00 Inches
3 - 9	390 Yds.	.00
10 -16	270	.04
17 -23	300	.00
24 - 30	270	1.66
	1320 Yds	1.70 Inches

The total number of treated acres to date = 165.00 acres

There was no amending during the month of June.

Water Monitoring and Testing

Water samples were not taken during the month.

Deposition

There has been 40 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 6/1, 6/11, 6/18, and 6/27.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of June 2001

DAY
<u> </u>
2.
3
<u>4.</u> <u>5</u>
6.
8
9.
10.
11.
12.
13.
14.
15
16,
17.
18.
19.
21
22.
23.
<u> 24.</u> 25.
26.
27
28.
29.
30.
31

TO A TNDE A T T
RAINFALL
.00.
00
.00
.00
.00
00
.00
.00
.00
.00
.02
.02
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
01
.33
1.28
.04
00
.00
.00

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

onald G. Holen

Operations Manager

Georgia-Pacific Corporation Georgia-Pacific West, Inc. A wholly owned subsidiary	90 West Redwood Avenue Fort Bragg. California 95437-3471 Telephone (707) 964-5651
	RWQCB REGION 1
	AUG 2 9 2001
e A	$\begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
	A wholly owned subsidiary

Enclosed is the <u>July 2001</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

long Hertmeyn 2

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

MONTH OF JULY 2001

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 7	270	.00 Inches
8 - 14	300 Yds.	00
15-21	300	.04
22 -28	390	.00
29 - 31	150	.11
	1410 Yds	11 Inches

The total number of treated acres to date = 165.00 acres

There was no amending during the month of July.

Water Monitoring and Testing

Water samples were not taken during the month.

Deposition

There has been 40 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 7/5,7/10,7/19, and 7/26.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg. CA. 95437 (707) 964-5651

Rainfall for the Month of July 2001

DAY
1
2
3,
4
5,
6
7
8. ·
8.
10.
11.
12.
13
14
<u>15.</u>
16.
17
18.
19
20
21
??
24.
25
26.
27.
28.
.29
30.
31

•
RAINFALL
.00
00
.00
.00
.00
00
.00
00
.00
00
.00
.00
.00
.00
.00
00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
<u>. [1]</u>
.00

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

onald G. Holen

Operations Manager

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redvood Avenne Fort Bragg, California 95437-3477 Telephone (707) 964-5651

September 18, 2001

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

SEP, 1 9 /2001 محكال LGR 🗋 KAD 9-21-010

RWQCB

REGION 1

Dear Mr. Reed

Enclosed is the <u>August 2001</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-20

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353

Sincerely.

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

Georgia-Pacific West, Inc. A wholly owned subsidiary

October 16, 2001

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

RWQCB REGION 1

OCT 18 2001 D CRU 🗂 SAM i lgr RSG FCR 10-19-010

Dear Mr. Reed:

:

Enclosed is the <u>September 2001</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

MONTH OF SEPTEMBER 2001

RWQCB REGION 1 OCT 18 2001

1

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	
Rainfall		
Week of	North Area	Details
1	30	
2 - 8	180 Yds.	.(00)
9 -15	210	.02
16-22	300	.02
23-29	300	.00
30		.00
	1020 Yds	.04 Inches

The total number of treated acres to date = 175.00 acres

There was no amending done during the month.

Water Monitoring and Testing

Water samples were not taken during the month.

Deposition

There has been 50 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 9/3, 9/9, 9/16,9/23 and 9/30/01. Each load was 10 cubic yards.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of September 2001

DAY
1.
2.
3.
6.
7.
<u> </u>
9.
10.
11.
12.
13.
14.
<u> </u>
16.
17.
18.
19.
20,
21.
22
23
24.
25.
26.
<u> </u>
<u> </u>
<u> </u>
J1.

RAINFALL
.00
.00
00
.00
.00
.00
0
.00
.00
.00
.00
.02
.00
.00.
.00
.00.
.00
.00
.00
.02
.00
.00.
.00.
.00
.00
.00.
.00
.00
.80
.00
.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen

Ronald G. Holen Operations Manager

Georgia-Pacific West. Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

November 26, 2001

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Reed:

Enclosed is the <u>October 2001</u> Monitoring Report for Georgia-Pacific West. Inc. at Fort Bragg (McGuire Ranch) California. as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely.

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland) RWQCB REGION1

NOV 2 8 2001 D SAW . CR CRJ RLT LGR U LGR ____ U KAD 🗋 FCR LEW 11-30-016

MONTH OF OCTOBER 2001

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	
Rainfall	-	
Week of	North Area	Details
1-6	90	.00 Inches
7 - 13	90 Yds.	.01
14-20	30	.00
21-27	60	.10
28-31	0	.64
	270 Yds	.75 Inches

The total number of treated acres to date = 175.00 acres

There was no amending done during the month.

Water Monitoring and Testing

Water samples were not taken during the month.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 10/7,10/14 and 10/21. Each load was 10 cubic yards.

RWQCB REGION 1

GEORGIA-PACIFIC WEST. INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of October 2001

DAY
<u> </u>
2
3
4
5
6
8
9.
10
11
<u> </u>
13.
14
15
16
<u> </u>
18.
19
20
21
22
24
25
26
<u> </u>
28
29
30
31.

RAINFALL
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.00
.00
00
00
.00
.00
<u> </u>
00
.00
.00
.09
.00
.00
.00
.01
.00
.03
.49
.12

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen Operations Manager

MONTH OF AUGUST 2001

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	Rainfall
Week of	North Area	Details
1 - 4	150	00 Inches
5 - 11	210 - Yds.	02
12-18	270	Į_()
19 -25	300	10
26 - 31	180	,) ()
		25 Inches

The total number of treated acres to date = 175.00 acres

The amending for year 2001 was completed this month. Approximately 10 acres were amended,

Water Monitoring and Testing

Water samples were not taken during the month-

Deposition

There has been 40 cubic yards of sludge hauled from the Mendocino City Community Services District Haul dates were 8.3, 8.10, 8.20, and 8.22.

GEORGIA-PACIFIC WEST, INC.

90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of August 2001

•
DAY
1.
2.
3
4,
6.
<u> </u>
8.
9,
12.
13
14
15
16
18.
19
· · · · · · · · · · · · · · · · · · ·
<u> </u>
<u> </u>
<u> </u>
24
<u> </u>
26.
27
28
29
30.
31

RAINFALL
.00
.00
.00
.00
.00
.00
.00
.00
.00
.02
.00
.04
.00
.00
.00
.00
.00
.00
.00
.00
.00
.09
10
.00
.00
.00
.00
.00
.00
00
,00

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of tine and imprisonment for knowing violations."

Ronald G. Holen

Operations Manager

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

December 18, 2001

Mr. Charles Reed North Coast Regional Water Quality Comrol Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Reed:

Enclosed is the <u>November 2001</u> Monitoring Report for Georgia-Pacific West. Inc. at Fort Bragg (McGuire Ranch) California. as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely.

Jour

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland) R W Q C B REGION 1

MONTH OF NOVEMBER 2001

Monitoring and Reporting Order No. 90-154. Soil Amending Project

	Ash Deposited	
Rainfall		
Week of	North Area	<u>Details</u>
I- 3	30	.00 Inches
4 - 10	90 Yets.	.07
11-1-	90	3.61
18-24	00	4.24
25-30	68	2.56
	210 Yels	10.48 Inches

The total number of treated acres to date = 175.00 _____acres

There was no amending done during the month.

Water Monitoring and Testing

Water samples were taken for PH and COD.

Deposition

There has been 40 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 11/4.11/12 .11/19 and 11/2". Each load was 10 cubic yards.

NCOION 1	-
DEC 2 7 2001	
	~ ·····
	a

KAC EJL

RWQCB

Rainfall for the	Month	of November	2001

DAY
1.
<u> </u>
3.
4_
5.
6.
<u>6.</u> <u>7.</u> <u>8.</u> <u>9.</u>
9.
10.
<u> </u>
12.
13,
14
<u> 14.</u> <u> 15.</u>
16
<u>16.</u> 17
<u> </u>
10.
<u> </u>
20.
<u> </u>
24
25
26
27.
28
<u>29.</u>
30
31.

RAINFALL
.00
.90
.00
.00
.00
.00
.00
.00
.00
.07
.57
1.33
.68
.17
.02
.83
.01
04
.09
.60
1.40
.00
1.86
.31
.00
.00
.08
.00
00

Location	N. Pond			
Date	9-Nov	t6-Nav	21-Nov	30-Nov
P }}	n/a	6.4	6.5	6.4
COD)	n/a	n/a	n/a	28 mg/l

Location	S.Pand			
Date	9-Nov	16-Nov	21-Nov	30-Nov
PH	n/a	6.5	6.6	6.4
COD	n/a	n/a	n/a	34 mg/l

Location	N.Road			
Date	9-Nov	16-Nov	21-Nov	30-Nov
P+1	n/a	6.5	6.6	6.5
C:00	n/a	n/a	n/a	23 mg/l

Date	9-Nov	16-Nov	21-Nov	30-No
PH	п/а	6.4	6.4	6.2
COD	n/a	n/a	n/a	23 mg

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system. or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Rogald G. Holen

Operations Manager

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

> R W Q C B REGION 1

January 21, 2002

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

JAN 24 2002 ΠE. 1-30-0210

Dear Mr. Reed:

Enclosed is the <u>December 2001</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF DECEMBER 2001

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	ï
Rainfall		
Week of	North Area	Details
1	00	1.98 Inches
2 - 8	00 Yds.	3.28
9-15	00	2.76
16-22	00	3.07
23-29	00	3.31
30-31	00_	1.02
1	00 Yds	15.42 Inches

The total number of treated acres to date = 175.00 acres

There was no amending done during the month.

Water Monitoring and Testing

Water samples were taken for PH.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 12/6,12/10 and 12/18. Each load was 10 cubic yards.

Rainfall for the Month of December 2001

DAY	_	RAINFALL
1.		1.98
2.		.42
3		.55
4		.00
5.	-	1.13
6		1.16
7		.02
8.		00
9.		.25
10.	· · · · · · · · · · · · · · · · · · ·	07
11.		.57
<u> </u>		.03
13.		.01
14.		1.81
<u> </u>		.02
<u> </u>		19
<u> </u>		.89
<u> </u>		01
<u> </u>		.25
20.		87
<u> </u>		.05
22.		.81
23		.25
24		1.86
25.		19
26.		02
27.		.77
<u> </u>		06
29.		.16
30.		34
<u> </u>	· · ·	.68

Location	N. Pond			
Date	6-Dec	14-Dec	21-Dec	27-Dec
PH	7.1	7	7.2	7.2
COD	n/a	n/a	n/a	n/a

Location	S.Pond			
Date	6-Dec	14-Dec	21-Dec	27-Dec
PH	7.2	7.2	7.1	7.1
COD	n/a	n/a	n/a	n/a

Location	N.Road			
Date	6-Dec	14-Dec	21-Dec	27-Dec
PH	7.1	7	6.9	7.1
COD	n/a	n/a	n/a	n/a

Location	S.Road		·	
Date	6-Dec	14-Dec	21-Dec	27-Dec
РН	7.2	7.2	7.1	7
COD	n/a	n/a	n/a	n/a

.

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

 ∇ Ronald G. Holen

Operations Manager

GP	Georgia-Pacific Corporation Georgia-Pacific West, Inc. A wholly owned subsidiary	90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651	
February 25, 2002		REGION 1	
Mr. Charles Reed North Coast Regional Water Quality Control Board		FEB 2 8 2002 US	
5550 Skylane Boulevard, Su Santa Rosa, CA 95403	ite A	3-7-02	

Enclosed is the <u>January 2002</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

long.

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF January 2002

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	
Rainfall		
Week of	North Area	<u>Details</u>
1-5	00	2.90 Inches
6 -12	00 Yds.	2.11
13-19	00	.00
20-26	00	1.31
27-31	00	.31
	00 Yds	6.63 Inches

The total number of treated acres to date = 175.00 acres

There was no amending done during the month.

Water Monitoring and Testing

Water samples were taken for PH & COD.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 1/2, 1/16 and 1/28. Each load was 10 cubic yards.

Rainfall for the Month of January 2002

~		
DAY	•	RAINFALL
	•	<u> </u>
2.	-	<u> </u>
3.		.00
4.		.00
5.	• •	0.31
6	•	1.65
7	•	.06
8.	•	.40
9.	•	.00
	•	.00
11.		.00
	•	.00
<u> 12. </u>		
13.		00
14	•	00
15	,	00
16.		00
17		.00
<u> 18. </u>		.00
19.		00
20		.00
21.		.32
22.		.16
23.		.00
24.		.00
25.		.00
26.		.83
27.		.18
28.		.05
29.		.03
30.		00
31		.00

Location	N. Pond			
Date	3-Jan	10-Jan	17-Jan	25-Jan
PH	7.2	7.1	7.2	7.3
COD	11 mg/l	N/A	N/A	N/A

Location	S.Pond			
Date	3-Jan	10-Jan	17-Jan	25-Jan
PH	7.1	7.3	7.3	7.2
COD	19 mg/l	N/A	N/A	N/A

Location	N.Road			
Date	3-Jan	10-Jan	17-Jan	25-Jan
РН	7.2	7.1	7.3	7.2
COD	< 10 mg/l	N/A	N/A	N/A

Location	S.Road			
Date	3-Jan	10-Jan	17-Jan	25-Jan
РН	7.2	7.2	7.3	7.3
COD	32 mg/l	N/A	N/A	N/A

•

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Bonald G. Holen

Operations Manager D4

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

March 26, 2002

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

MAR 2 8 2002 TAKS 🗀 FCR 🗖 RSG -cer

RWQCB REGION 1

Dear Mr. Reed:

Enclosed is the <u>February 2002</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely, oug Seitney

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen R. Sherwood (Portland)

MONTH OF FEBRUARY 2002

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	
Rainfall	-	•
<u>Week of</u>	North Area	Details
1 - 2	00	.34 Inches
3 - 9	00 Yds.	.72
10- 16	60	.01
17-23	30	4.27
24-28	30	.00
	120 Yds	5.34 Inches

The total number of treated acres to date = 175.00 ____acres

There was no amending done during the month.

Water Monitoring and Testing

Water samples were taken for PH.

Deposition

There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 2/8 and 2/21. Each load was 10 cubic yards.

Rainfall for the Month of February 2002

DAY
1.
2.
3.
4.
5.
6
<u> </u>
8
<u> </u>
<u>9.</u>
<u> </u>
<u>11.</u>
12.
13.
14,
15.
<u> </u>
17.
18.
19.
20,
<u>21</u> .
22.
23.
24.
75
<u> 25. </u> 26.
27.
<u></u> 28.
30.
31.

RAINFALL
0.34
.00
.00
.00
.00
.02
.24
.46
.00
.00
.00
.00
.00
.00
.00
.01
.64
.00
1.27
. 1.97
.03
.00
36
.00
.00
.00.
.00
.00
<u> </u>
<u> </u>
<u></u>

Location	N. Pond			
Date	07-Feb	14-Feb	21-Feb	28-Feb
PH	7.3	7.2	7.2	7.1
COD	N/A	N/A	N/A	N/A

•

Location	S.Pond			
Date	07-Feb	14-Feb	21-Feb	28-Feb
РН	7.2	7.1	7.1	7.3
COD	N/A	N/A	N/A	N/A

Location	N.Road			
Date	07-Feb	14-Feb	21-Feb	28-Feb
PH	7.2	7.2	7.1	7.1
COD	N/A	N/A	N/A	N/A

Location	S.Road			[
Date	07-Feb	14-Feb	21-Feb	28-Feb
PH	7.1	7.4	7.3	7.2
COD	N/A	N/A	N/A	N/A

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen

Operations Manager M

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

April 22, 2002

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

R WQCB REGION 1 APR 2 4 2002 🗔 SAIA 📋 FCR PTR:) LGR -Cas 4-26-02LW

Dear Mr. Reed:

Enclosed is the <u>March 2002</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Jourg Dertmern

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen

MONTH OF March 2002

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	
Rainfall		
<u>Week of</u>	North Area	Details
1 - 2	00	.00 Inches
3 - 9	90 Yds.	1.53
10- 16	90	.87
17-23	120	1.03
24-30	120	.02
31	0_	.00
	420Y ds	3.45 Inches

The total number of treated acres to date = 175.00 acres

There was no amending done during the month.

Water Monitoring and Testing

Water samples were taken for PH and COD.

Deposition

There has been 40 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 3/5, 3/9, 3/24, and 3/31. Each load was 10 cubic yards.

R	W	Q	С	R
RI	ΞĠ	10	Ň	1

AS: 2 4 2002

Rainfall for the Month of March 2002

DAY
1
<u></u> <u></u> <u></u> <u></u> <u>4.</u>
3.
4.
<u>4.</u> <u>5.</u>
<u> </u>
7.
<u> </u>
9.
10.
<u> 11.</u> <u> 12.</u>
12.
17 .
14.
15
<u> 16. </u>
17.
18.
<u> 19.</u> <u> 20.</u> <u> 21.</u>
20.
21.
<u> 22. </u> <u> 23. </u>
23.
<i>L</i> 4.
25
<u></u>
<u>25.</u> <u>26.</u> <u>27.</u>
28.
<u> </u>
<u>30.</u>
31.

RAINFALL
.00
00
.00
.00
.08
.66
.68
.00
.11
.41
.07
.11
.28
.00
.00
.00
.14
.00
.00
.00
.00
.39
.05
.00
.00
.00
.00
00
00
.00
.00

Location	N. Pond			
Date	07-Mar	14-Mar	21-Mar	29-Mar
рн	7.2	7.1	7.3	7.3
COD	N/A	. <10 mg/l .	N/A	. N/A

Location	S.Pond			
Date	07-Mar	14-Mar	21-Mar	29-Mar
PH	7.2	7.3	7.1	7.1
COD	N/A	27mg/l	N/A	N/A

Location	N.Road			
Date	07-Mar	14-Mar	21-Mar	29-Mar
PH	7.3	7.2	7.1	7.3
COD	N/A	11 mg/l	N/A	N/A

Location	S.Road			
Date	07-Mar	14-Mar	21-Mar	29-Mar
PH	7.3	7.2	7.1	7.4
COD	N/A	19 mg/l	N/A	N/A

.

•

.

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen Operations Manager

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

May 17, 2002

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

REGION 1 MAY 2 8 2002 8/2/02 CER 🗋 SAVA D FCR drs. RSc 5.29-024

Dear Mr. Reed:

Enclosed is the <u>April 2002</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

loug s Leitmen

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen

MONTH OF APRIL 2002

Monitoring and Reporting Order No. 90-154, Soil Amending Project

Ash Deposited	
North Area	Details
90	.07 Inches
120 Yds.	.22
90	.72
90	.03
30	.15
0	.00
420Yds	1.19 Inches
	90 120 Yds. 90 90 30 0

The total number of treated acres to date = 175.00 acres

There was no amending done during the month.

Water Monitoring and Testing

Water samples were not required for the month.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 4/14, 4/21, , and 4/29. Each load was 10 cubic yards.

H W Q	C	8	
REGIO	病	1	

MAY 2.8 2002

Rainfall for the Month of April 2002

<u>DAY</u> <u>1.</u> <u>2.</u> <u>3.</u>
<u>2.</u> <u>3.</u>
3
4.
5.
6.
7.
8.
<u>6.</u> <u>7.</u> <u>8.</u> <u>9.</u>
10.
<u>11.</u>
12.
13
<u> 14. </u>
15.
-16.
<u>16.</u> <u>17.</u>
<u>18.</u> <u>19.</u> <u>20.</u>
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
where the second se
30.

THAT THE A ST
RAINFALL
00
.00
.02
.02
.00
.03
.00
.00
.10
.08
.04
.00
.00
.09
.05
.15
.43
.00
.00
.00
.00
00.
.00
.00
.00.
.00
.03
00.
.10
.00

DAY <u>1.</u> 2.

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen Operations Manager D. H.

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

RWOCB

June 25, 2002

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

REGION 1 JUN 27 2002 ACK JHOU Grover

Dear Mr. Reed:

Enclosed is the <u>May 2002</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen

MONTH OF MAY 2002

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	
Rainfall	-	
Week of	<u>North Area</u>	Details
1 - 4	60	.01 Inches
5 - 11	150 Yds.	.00
12-18	150	.00
19- 25	120	.46
26-31	90	.06
	570¥ds	.53 Inches

The total number of treated acres to date = 175.00 acres

There was no amending done during the month.

Water Monitoring and Testing

Water samples were not required for the month.

Deposition

There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 5/13, and 5/23. Each load was 10 cubic yards.
GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of May 2002

DAY
1.
<u>2.</u> <u>3.</u>
3
4.
<u>4.</u> <u>5.</u>
6.
<u>6.</u> <u>7.</u>
8.
9.
<u> </u>
<u>11.</u>
<u> 12. </u>
13.
<u> 14. </u>
<u> 15. </u>
16.
17.
<u> </u>
<u> 19. </u> <u> 20. </u>
20.
21
22.
23.
24.
<u>24.</u> 25.
26.
27.
28.
<u> </u>
30.
31.

RAINFALL
.01
00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.36
.10
.00
.00
.00
.00
.00
.00
.06
.00
.00

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

July 23, 2002

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Reed:

Enclosed is the <u>June 2002</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

ang Hertmeye

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen

MONTH OF JUNE 2002

Monitoring and Reporting Order No. 90-154, Soil Amending Project

Rainfall	
17010401	
Week of North Area	Details
1 30	.00 Inches
2 - 8 150 Yds.	.00
9- 15 150	.00
16-22 150	.00
23- 29 120	.00
300	.00
600Yds	.00 Inches

The total number of treated acres to date = 175.00 _____acres

There was no amending done during the month.

Water Monitoring and Testing

Water samples were not required for the month.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 6/1, 6/17 and 6/23. Each load was 10 cubic yards.

R W Q C B REGION 1

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

JUL 2 5 2002

SAWDFCRD RLTDLGRCKAD NPORSGDEJL	- <u></u>
---------------------------------------	-----------

Rainfall for the Month of June 2002

DAY
<u> </u>
<u> </u>
3
4
5
6.
7.
<u>8.</u> <u>9.</u>
9.
19.
<u>11.</u> <u>12.</u>
12.
15.
14.
<u> 15. </u>
16.
17.
18.
19.
<u> </u>
21
22.
23.
24
25.
26
27.
28,
29.
31.

RAINFALL
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
00
.00
.00
.00
.00
.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

DH

Ronald G. Holen

Operations Manager

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

August 26, 2002

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB **REGION 1** AUG 2 8 2002 🗆 SAW n ra NKN NEU 9-6-02

Dear Mr. Reed:

Enclosed is the <u>July 2002</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely. na

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF JULY 2002

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	
Rainfall		x
Week of	North Area	Details
1-6	90	.00 Inches
7 -13	⁷ 90 Yds.	.00
14-20	120	.00
21-27	90	.00
28-31	30	.02
· · ·	420 Yds	.02 Inches

The total number of treated acres to date = 175.00 acres

There was no amending done during the month.

Water Monitoring and Testing

Water samples were not required for the month.

Deposition

There has been 30 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 7/3, 7/18 and 7/28. Each load was 10 cubic yards.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

R	W	Q	С	R
R	ËĠ	Ō	Ň	ĩ

AUG 2 8 2002

C SAW RLT NPQ	FCR LGR RSG	

Rainfall for the Month of July 2002

DAY
1.
<u> </u>
3.
$ \frac{3.}{4.} \frac{4.}{5.} \frac{6.}{7.} \frac{7.}{8.} \frac{9.}{10} $
5.
<u> </u>
<u> </u>
8
<u> </u>
10.
<u> 11. </u>
12.
13.
14
15
<u>16.</u> <u>17.</u> <u>18.</u> <u>19.</u>
17
<u> 18. </u>
<u> 19. </u>
20. 21. 22.
22
23.
<u>24.</u> <u>25.</u>
25
<u> </u>
<u>26.</u> <u>27.</u> <u>28.</u>
<u></u>
<u></u> <u></u> <u>30.</u>
<u></u>
31

RAINFALL
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
00
.00
.00
.00
.00
00
00
00
00
.00
00
.00
.00
.00
<u> </u>
00
.02

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Ronald G. Holen

Operations Manager

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

September 13, 2002

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Reed:

Enclosed is the <u>August 2002</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

049

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF AUGUST 2002

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	
Rainfall		
Week of	North Area	Details
1-3	60	.08 Inches
4 -10	180 Yds.	.00
11-17	60	.02
18-24	240	.03
25-31	90	.02
	630 Yds	.15 Inches

The total number of treated acres to date = 180.00 ____acres

The Amending project was completed this month for the year.

Water Monitoring and Testing

Water samples were not required for the month.

Deposition

There has been 20 cubic yards of sludge hauled from the Mendocino City Community Services District. Haul dates were 8/12 and 8/15. Each load was 10 cubic yards.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

R I RE	WQCB GION1	
SEP	1 6 2002	

Rainfall for the Month of August 2002

DAY
1
2.
<u>2.</u> <u>3.</u>
4.
5.
6.
<u> </u>
<u> </u>
9.
<u> </u>
11
12.
13.
<u> </u>
15
<u> 15. </u>
17
<u> </u>
<u> 18. </u>
<u> 19.</u> 20.
22
24
25
26.
27
28
<u>29.</u>
30
31

RAINFALL
.03
.02
.03
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.02
.00
.00
.00
.00
.00
.00
.00
.03
.00
.00
.00
.00
.00
.02
.00
.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Operations Manager DH

96-096

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

October 22, 2002

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB REGION 1 OCT 2 4 2092 🖸 SAW 🗋 FCR CXJUS Las T KAD) npc RSC NKW ALKE 10-25-

Dear Mr. Reed:

Enclosed is the <u>September 2002</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

loug y

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF SEPTEMBER 2002

Monitoring and Reporting Order No. 90-154, Soil Amending Project

,	Ash Deposited	
Rainfall	-	
Week of	North Area	Details
1-7	00	.00 Inches
8 -14	00 Yds.	.00
15-21	00	.00
22-28	00	.00
29-30	00	.00
	00 Yds	.00 Inches

The total number of treated acres to date = <u>180.00</u>___acres

Water Monitoring and Testing

Water samples were not required for the month.

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

R W Q C B REGION 1

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

7

	OCT 24	2002	
C SAW		EJL	

Rainfall for the Month of September 2002

DAY		RAINFALL
1.	· · ·	.00
2.		.00
3.		.00
4.		00
5		.00
6.		.00
7.		.00
8.	•	.00
9.		.00
10.		.00
11.		.00
12.	•	.00
13.		.00
14.		.00
15.		.00
16.		00
		00
18.		.00
<u> </u>		.00
		.00
21.		.00
22.		.00
23.		.00
24.		.00
25.	· · · · ,	.00
26.		.00
27.		.00
28		.00
<u> </u>		.00
<u> </u>		.00
31		.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

in

Paul E. Johnson Plant Superintendent

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

96-096

November 15, 2002

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB **REGION 1** NOV 2 6 2002 🗍 SAW O RLT E NPC KNEN NEN 11/24/02

Dear Mr. Reed:

Enclosed is the <u>October 2002</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

louas

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: R. Holen

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF OCTOBER 2002

Monitoring and Reporting Order No. 90-154, Soil Amending Project

· .	Ash Deposited	
Rainfall	-	
Week of	North Area	<u>Details</u>
1-5	00	.00 Inches
6 -12	00 Yds.	.03
13-19	00	.00
20-26	00	.06
27-31	00	.00
	00 Yds	.09 Inches

The total number of treated acres to date = 180.00 _acres

Water Monitoring and Testing

Water samples were not required for the month.

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of October 2002

	4 C		
DAY			
1.			
2.			
3.			
4.			
<u>4.</u> <u>5.</u> <u>6.</u>			
6.			
7.			
<u>8.</u>			
<u> </u>			
9,			
10.			
<u> </u>			
12.			
13.			
<u> </u>			
15.			
<u>16.</u> <u>17.</u> <u>18.</u>			
17.			
18			
<u> </u>			
<u>20.</u> 21.			
22.			
<u>23.</u> 24.		`	
24			
25.			
26.			
27.			
28.			
29.			
<u>29.</u> <u>30.</u>		÷	
31.			
<u></u>	ŕ		

RAINFALL
.00
.00
.00
.00
.00
.00
.00.
.00
.00
.03
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.04
.00
.02
.00
.00
.00
.00
.00
.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Paul E. Johnson Plant Superintendent

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651 RWQCB REGION 1

December 19, 2002

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

DEC 2 3 2002 C) FCR 🗍 LGR D PSA NKN PHP 12/31/02 VCR 1/3/03

Dear Mr. Reed:

Enclosed is the <u>November 2002</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 92-26.

We are using the drainage controls and management practices outlined in Order NO. 92-26 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely.

Doug Hertmey

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: Paul Johnson

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF NOVEMBER 2002

Monitoring and Reporting Order No. 90-154, Soil Amending Project

	Ash Deposited	· .
Rainfall	-	
Week of	North Area	Details
1-2	00	.00 Inches
3 - 9	00 Yds.	3.58
10-16	00	1.61
17-23	00	.03
24-30	00	.00
	00 Yds	5.22 Inches

The total number of treated acres to date = 180.00 acres

Water Monitoring and Testing

No water samples were taken for the month.

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

R W Q C B REGION 1

Rainfall for the Month of November 2002

<u>DAY</u>
1`
2.
3.
4.
6.
7.
8.
9.
<u>6.</u> <u>7.</u> <u>8.</u> <u>9.</u> <u>10.</u>
<u>10.</u> <u>11.</u> <u>12.</u> <u>13.</u> <u>14.</u> <u>15.</u>
12.
13.
14.
15.
16.
17.
$ \begin{array}{r} 14. \\ 15. \\ 16. \\ 17. \\ 18. \\ 19. \\ 20. \\ 21 $
19.
20.
22.
23.
24
25.
26.
27.
$ \begin{array}{r} 25. \\ 25. \\ 26. \\ 27. \\ 28. \\ 29. \\ 22 22 $
29
30.
<u>31.</u>

RAINFALL
.00
.00
.00
.00
.00
.00
1.65
1.59
.34
.89
.00
.50
.04
.00
.00
.18
.03
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Paul E. Johnson Plant Superintendent

	Georgia-Pacific Corporation	· · ·
GP	Georgia-Pacific West, Inc. A wholly owned subsidiary	90 West Redwood Avenu Fort Bragg, California 95437-3471 Telephone (707) 964-565
January 27, 2003		R WQCB REGION 1
Mr. Charles Reed		REGION
North Coast Regional W	ater	JAN 29 2003
Quality Control Board	ר.	SAWIFCR/KS
550 Skylane Boulevard,	Suite A 🛛 🛛 🖉	AWY I FCK ZI RLT 1.2 KAD MPO I RSG I EJL

Enclosed is the <u>December 2002</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely, Jourg Leitmen

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: Paul Johnson

GEORGIA-PACIFIC McGUIRE RANCH REPORT

R	W	Q	С	B
R	EG	10	Ň	1

JAN 29 2003

	SAW	1607		
<u>ل</u>	RLT (ភភគ	
	NPO TI	000	EJI	······
		· · · · · · · · · · · · · · · · · · ·	⊊v L	

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	
Rainfall	- -	
Week of	North Area	Details
1-7	00	.22 Inches
8 - 14	00 Yds.	7.03
15-21	00	5.75
-22-28	00	6.02
29-31	00	2.59
	00 Yds	21.61 Inches

The total number of treated acres to date = <u>180.00</u> acres

Water Monitoring and Testing

Water samples were taken for ph.

Deposition

୍ୱ

There has been no sludge hauled from the Mendocino City Community Services District.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of December 2002

DAY
1.
2.
3.
4,
5.
6.
<u> </u>
<u>DAY</u> <u>1.</u> <u>2.</u> <u>3.</u> <u>4.</u> <u>5.</u> <u>6.</u> <u>7.</u> <u>8.</u> <u>9.</u> <u>10.</u> <u>11.</u>
<u> </u>
10
10,
<u> </u>
12,
1.3.
$ \begin{array}{r} 10. \\ 11. \\ 12. \\ 13. \\ 14. \\ 15. \\ 16. \\ 17. \\ 17. \\ $
<u> </u>
<u> </u>
<u> </u>
<u> </u>
<u>19.</u>
<u> </u>
21.
22.
23.
$ \begin{array}{r} 16, \\ 17, \\ 18, \\ 19, \\ 20, \\ 21, \\ 22, \\ 23, \\ 24, \\ 25 $
25.
<u>25.</u> <u>26.</u>
27.
<u>28.</u> 29. 30.
29.
30.
31.

RAINFALL
.00
.00
.00.
.19
.00
.03
.00
.00
.49
.53
.03
.02
1.83
4.13
.92
1.60
.26
.14
1.32
.89
.62
.00
.00
.36
.00
.27
1.03
4.36
.64
.78
1.17

.

Location	N. Pond			
Date	02-Dec	09-Dec	16-Dec	23-Dec
РН	7.3	7.2	7.3	7.1
COD	N/A	N/Ā	N/A	N/A

.

 $\left(\begin{array}{c} \cdot \end{array} \right)$

Location	S.Pond			
Date	02-Dec	09-Dec	16-Dec	23-Dec
РН	7.2	7.2	7.3	7.1
COD	N/A	N/A	N/A	N/A

· · · · · · · · · · · · · · · · · · ·				
Location	N.Road			
Date	02-Dec	09-Dec	16-Dec	23-Dec
PH	7.4	7.3	7.3	7.2
COD	N/A	N/A	N/A	N/A

Location	S.Road			
Date	02-Dec	09-Dec	16-Dec	23-Dec
PH	7.3	7,4	7.4	7.2
COD	N/A	N/A	N/A	N/A

.

•

m

Paul E. Johnson Plant Superintendent

RWQCB **REGION 1**

JAN 29 2003

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

8320 96-096

February 27, 2003

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

R W Q C B REGION 1 MAR - 3 2003 SAW 🗍 FCR NUS S RLT 🖸 LGR 🗋 KAN C RSG 4+103

Dear Mr. Reed:

Enclosed is the <u>January 2003</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Jouq

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

MONTH OF JANUARY 2003

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

•	Ash Deposited	
Rainfall	-	
Week of	North Area	Details
1-4	00	.40 Inches
5 - 11	00 Yds.	1.12
12-18	00	3.41
19-25	00	1.16
26-31	00	.32
	00 Yds	6.41 Inches

The total number of treated acres to date = 180.00 acres

Water Monitoring and Testing

Water samples were taken for ph. & C.O.D.

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

RWQCB REGION 1	
MAR - 3 2003	
QRLT QR NPQ RSG QL FCR	

Rainfall for the Month of January 2003

DAY
<u> </u>
<u> </u>
<u> </u>
4.
5.
<u>4.</u> <u>5.</u> <u>6.</u> <u>7.</u> <u>8.</u>
8.
10.
<u>11.</u> 12.
<u> 12. </u>
<u> </u>
14.
15.
<u>16.</u>
<u> 17. </u> <u> 18. </u>
18.
<u> </u>
<u>20.</u> <u>21.</u>
21.
22.
23.
<u>24.</u> 25.
25
26.
27.
28.
30.
31.

RAINFALL
.00
.14
.26
.05
.00
.00
.00
.20
.16
1.57
1.38
.46
.00
.00
00
00
.00
.00.
.15
. <u>40</u>
.14
.16
.31
.02
.15
.00.
.00
.10
.05

0

Location	N. Pond				
Date	03-Jan	10-Jan	17-Jan	24-Jan	29-Jan
PH	7.1	7.1	7	6.9	6.9
000	N/A	N/A	N/A	N/A	16 mg/l

Location	S.Pond				
Date	03-Jan	10-Jan	17-Jan	24-Jan	29-Jan
PH	7.2	7.1	7.1	7	6.9
COD	N/A	N/A	N/A	N/A	83 mg/i

Location	N.Road				
Date	03-Jan	10-Jan	17-Jan	24-Jan	29-Jan
РН	7.1	7.2	7.2	7	7.1
COD	N/A	N/A	N/A	N/A	13 mg/l

Location	S.Road				
Date	03-Jan	10-Jan	17-Jan	24-Jan	29-Jan
PH	7.2	7.1	7	7.1	7.1
COD	N/A	N/A	N/A	N/A	34 mg/l

•

Paul E. Johnson Plant Superintendent

	Georgia-Pacific Corporation		
	Georgia-Pacific West, Inc. A wholly owned subsidiary	90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-565.	
 March 24, 2003	RWQCE REGION 1		
Mr. Charles Reed		KIN	

North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403 MAR 2 6 2003 SAW_____FCR_____KAD_____ Ret_____RSG_____ELL____

CR 4/11/03

Dear Mr. Reed:

Enclosed is the <u>February 2003</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

long Dectimen

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

MONTH OF FEBRUARY 2003

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	
Rainfall	Ξ.	
Week of	North Area	Details
1	00	.16 Inches
2 - 8	00 Yds.	.00
9-15	00	1.80
16-22	00	1.21
23-28	00	.24
	00 Yds	3.41 Inches

The total number of treated acres to date = <u>180.00</u> acres

Water Monitoring and Testing

Water samples were taken for ph.

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of February 2003

DAY
1.
2.
<u>2.</u> <u>3.</u>
4.
5.
6.
<u> </u>
8.
9
10.
11.
12.
13.
14.
15.
<u> </u>
17.
18.
<u>19.</u> <u>20.</u> <u>21.</u>
20.
21.
<u>22.</u> <u>23.</u>
23.
<u>24.</u> 25.
25.
26.
<u> </u>
28.
29.
30.
31.

RAINFALL
.16
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.03
1.43
.10
.24
.40
00
.04
.74
.03
.00
.00
.00
.01
.11
.00
.12
.00
.00
.00
3 / 13

Location	N. Pond			
Date	07-Feb	14-Feb	21-Feb	28-Feb
PH	7	7.1	6.9	7
COD	N/A	N/A	N/A	N/A

·		•		
Location	S.Pond			
Date	07-Feb	14-Feb	21-Feb	28-Feb
РН	7	7.1	7	7
COD	N/A	N/A	N/A	N/A

Location	N.Road			
Date	07-Feb	14-Feb	21-Feb	28-Feb
PH	· 7	7.1	7.1	7.1
COD	N/A	N/A	N/A	N/A

Location	1 S.Road			
Date	07-Feb	14-Feb	21-Feb	28-Feb
РН	7.1	- 7	7	7.1
COD	N/A	N/A	N/A	N/A

Paul & John

Paul E. Johnson Plant Superintendent

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

April 23, 2003

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

R W Q C B REGION 1 APR 2 5 2003 Nos SAW SAW D FCR 7 RLT TI LGR ΠKAD NKN STELOZ

Dear Mr. Reed:

Enclosed is the <u>March 2003</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Voug y

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

MONTH OF MARCH 2003

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

North Area	Details
00	.00 Inches
00 Yds.	.00
00	2.71
00	1.26
00	1.89
00	.00
00 Yds	5.86 Inches
	00 00 Yds. 00 00 00 00

The total number of treated acres to date = 180.00 ____acres

Water Monitoring and Testing

Water samples were taken for ph. & COD

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

R W Q C B REGION 1

APR 2 5 2003

SAW [FCR	<u> </u>
C		KAD
	R\$GC	EJL

Rainfall for the Month of March 2003

DAY
1.
2.
<u>2.</u> <u>3.</u>
<u>4.</u> <u>5.</u> <u>6.</u> <u>7.</u>
5.
6.
7.
8.
9.
<u> 10. </u>
<u>11.</u>
<u>12</u>
12
<u> 13. </u>
14.
15.
<u> 16. </u>
<u> 17. </u> <u> 18. </u>
18.
<u>19.</u>
20
<u></u>
<u>22.</u>
23.
<u>24.</u> <u>25.</u>
25.
26
27.
28.
29.
31.

RAINFALL
.00
.00
.00
.00
.00
.00
.00
.00
.00
.11
.15
.11
.44
.43
1.47
.20
.00
.00
.42
.23
.00
.41
.32
.00
.11
1.46
.00
.00
.00
.00
.00

٢

Location	N. Pond			
Date	06-Mar	13-Mar	20-Mar	27-Mar
РН	7	7.1	7	7.1
COD	N/A	N/A	N/A	< 10 mg/l

Location	S.Pond			
Date	06-Mar	13-Mar	20-Mar	27-Mar
PH.	6.9	7	6.9	6.8
COD	N/A	N/A	N/A	11 mg/l

Location	N.Road			
Date	06-Mar	13-Mar	20-Mar	27-Mar
PH	7.1	7	7	7.1
COD	N/A	N/A	N/A	< 10 mg/l

Location	S.Road			
Date	06-Mar	13-Mar	20-Mar	27-Mar
PH	7.1	6.9	6.9	7
COD	N/A	N/A	N/A	< 10 mg/l

Paul E. Johnson Plant Superintendent

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

96-015

June 2, 2003 Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Reed:

Enclosed is the <u>April 2003</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96. Due to a medical condition I have been out of the office and no one had access to my computer files therefor this report is a few days late.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

aug

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

R W Q C B REGION 1

MONTH OF April 2003

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	
Rainfall	-	
Week of	North Area	Details
1-5	00	1.32 Inches
6 -12	00 Yds.	1.43
13-19	00	2.64
20-26	00	3.10
27-30	00	3.42
	00	.00
	00 Yds	11.91 Inches

The total number of treated acres to date = 180.00 acres

Water Monitoring and Testing

Water samples were taken for ph. & COD

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

R WQCB REGION 1

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of April 2003

DAY
1.
<u>1.</u> <u>2.</u> <u>3.</u>
3.
4.
<u>4.</u> <u>5.</u>
6.
7.
<u> </u>
9.
10.
<u> </u>
<u>12.</u>
13.
<u> 14. </u>
15.
<u>16.</u> <u>17.</u> <u>18.</u>
17.
18.
<u> </u>
20.
22.
23.
<u>24.</u> <u>25.</u>
25.
26.
27.
<u>28.</u> <u>29.</u>
29.
<u> </u>
31.

RAINFALL
.03
.19
.17
.66
.00
.20
.05
.00
.00
.07
.05
1.06
.63
.99
.21
.77
.04
.00
.00
.00
.10
.28
.15
1.34
.70
.53
.08
.86
1.90
.58
00,

R W Q C B REGION 1

JUN - 4 2003

FCR		
	KAD	
RSG	EIL	

Paul E. Johnson Plant Superintendent

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

96-096

June 18, 2003\ Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

R W Q C B REGION 1 JUN 2 3 2003 NUN C FCR KAD ETT NPC KIKO 61271 LCEN 9/15/03

Dear Mr. Reed:

Enclosed is the <u>May 2003</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely, Joug Section

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

MONTH OF MAY 2003

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	
Rainfall	-	
Week of	North Area	Details
1-3	00	.43 Inches
4 -10	00 Yds.	.44
11-17	00	.00
18-24	00	.00
25-31	00	.03
	00	.00
	00 Yds	.90 Inches

The total number of treated acres to date = <u>180.00</u> acres

Water Monitoring and Testing

No water samples were required.

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

R W Q C B REGION 1

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

JUN 2 3 2003 SAW EJL

Rainfall for the Month of May 2003

DAY
1
2.
3.
<u> </u>
<u>4.</u> <u>5.</u>
6
<u> </u>
8.
9
10.
11
12
13
14.
15.
<u>16.</u> <u>17.</u>
17.
18.
<u> 19.</u> 20.
20.
21.
22
22.
<u> </u>
24.
25.
26
<u> </u>
30.
31

RAINFALL
00
.25
.18
12
00
.03
.05
.24
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
00
.00
.00
.00
.01
.00
.00
.00
.00
.02
.00
· <u>·vv</u>

Paul E. Johnson Plant Superintendent

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

July 23, 2003

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB

REGION 1

Dear Mr. Reed:

Enclosed is the <u>June 2003</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Hertmey

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

MONTH OF JUNE 2003

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

Rainfall	-	·
Week of	North Area	Details
1-7	00	.04 Inches
8 -14	00 Yds.	.00
15-21	00	.00
22-28	00	.00
29-30	00	.00
	00	.00
	00 Yds	.04 Inches

Ash Deposited

The total number of treated acres to date = 180.00 ____acres

Water Monitoring and Testing

No water samples were required.

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

R	W	0	С	R
R	EG	1Ô	Ň	1

*	JUL 24	2003	
SAW			
O NPQ			

Rainfall for the Month of June 2003

RAINFALL
.00
.00
.00
.00
.00
.02
.02
.00
.00.
.00
.00
.00
00
.00
.00
.00
00
.00
.00
00
.00
.00
00
00
00
00
.00
<u></u>
.00
00

aul E mo - \

Paul E. Johnson Plant Superintendent

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

August 25, 2003

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB **REGION 1**

AUG 2 6 2003

□ CK ____ CFOR ___ CJLS ___ Z NJ ___ CLGR ___ CKAD ___ □ NPO ___ CRSG ___ CEN ___ VKN ST / 3 CEN 9115/83

Dear Mr. Reed:

Enclosed is the <u>July 2003</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

sug

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations
MONTH OF JULY 2003

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	
Rainfall	-	
Week of	North Area	Details
1-5	00	.00 Inches
6 -12	00 Yds.	.00
13-19	00	.02
20-26	00	.00
27-31	00	.00
	00 Yds	.02 Inches

The total number of treated acres to date = 180.00 ____acres

Water Monitoring and Testing

No water samples were required.

Deposition

RWQCB REGION 1

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of July 2003

DAY	
1.	
<u> </u>	
3.	
4.	
5	
6.	
<u>6.</u> <u>7.</u>	
8.	
<u> </u>	
10.	
11	
12.	
13	
14.	
<u>15.</u>	
16	
17.	•
18.	
20.	
<u></u> <u>21.</u>	
22.	
23	
24	
25.	
<u>26.</u> <u>27.</u>	
27.	
28	
<u> </u>	
30.	
31.	

RAINFALL
00
00
00
00
.00
.00
00
.00
.00
.00
.00
.00
.02
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
and the second se
<u>00.</u>
.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

jo

Paul E. Johnson Plant Superintendent

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

96-096

September 22, 2003

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB **REGION 1** SEP 2 3 2003 ССК G FCR 🗍 RLT L NPC C RSG us

Dear Mr. Reed:

Enclosed is the <u>August 2003</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

oug y

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: Paul Johnson

MONTH OF AUGUST 2003

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	
Rainfall	-	
Week of	North Area	Details
1-2	. 00	.01 Inches
3 -9	00 Yds.	.00
10-16	00	.00
17-23	 O0 	.02
24-30	00	.00
31	00	.00
	00 Yds	.03 Inches

The total number of treated acres to date = <u>180.00</u> acres

Water Monitoring and Testing

No water samples were required.

Deposition

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of August 2003

DAY	RAINFALL
1.	.01
2.	.00
3.	.00
4.	00
5.	00
6.	.00
7.	.00
8.	.00
9.	.00
10.	.00
11.	00
12.	
<u>· 13.</u>	.00
14.	.00
15.	.00
16.	
17.	.00
18.	.00
19.	.00
20.	.00
21.	.02
22.	00
23.	.00
24.	.00
25.	.00
26.	.00
27.	00
28.	.00
29,	.00
30.	.00
31.	.00

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

2n

Paul E. Johnson Plant Superintendent

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

RWQCB

October 16, 2003 Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

REGION 1 OCT 2 2 2003 DFCR BLER 11/14/03 DLGR DKAD RSG DEAL 10/27/33 🗋 СК D N₽0

Dear Mr. Reed:

Enclosed is the <u>September 2003</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Dutwey

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: Paul Johnson

96-096

MONTH OF SEPTEMBER 2003

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

Ash Deposited

Rainfall	A	
Week of	<u>North Area</u>	Details
1-6	00	.37 Inches
7 -13	00 Yds.	.12
14-20	<u>00</u>	00.
21-27	00	.05
28-30	00	.00
	00 Yds	.54 Inches

The total number of treated acres to date = 180.00 __acres

Water Monitoring and Testing

No water samples were required.

Deposition

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of September 2003

DAY		RAINFALL
1.		.00
2.	- .	.00
3.	-	.30
4.		.04
5.	-	.03
<u> </u>	-	.00
7.	 1 1	01
8.	-	.04
9.	-	.07
10.	-	00
11.	-	.00
12.		.00
13.		.00
14.		.00
15.		.00
16.		00
17.		.00_
18.		.00
19.	-	.00
20	-	.00
21.		.00
22.		.00
23.	· · ·	.00
24.		.00
25.		.02
26		.00
27.		.03
28.		.00
29.		.00
30.		.00
31		.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Paul E. Johnson Plant Superintendent

Enclosed is the <u>October 2003</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: Paul Johnson

MONTH OF OCTOBER 2003

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	
Rainfall	-	
Week of	North Area	Details
1-4	00	.00 Inches
5-11	00 Yds.	.00
12-18	00	.00
19-25	00	.00
26-31	00	.00
	00 Yds	,00 Inches

The total number of treated acres to date = <u>180.00</u> ____acres

Water Monitoring and Testing

No water samples were required.

Deposition

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of October 2003

DAY
<u> </u>
2.
2
<u> </u>
5.
<u> </u>
<u> </u>
8.
9.
10.
11.
12.
<u> </u>
<u> 15. </u>
16.
17.
18
19.
20.
21.
22.
73
23.
24
<u> </u>
<u>26.</u>
<u> </u>
28.
<u> </u>
30.
31.

RAINFALL
.00
.00
.00
.00
00.
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
00
.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Paul E. Johnson Plant Superintendent

96-094

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

December 17, 2003

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB REGION 1	
DEC 1 9 2003	

CK _____ CFCR ____ CCFL / M CRUT ____ LGR ____ KAD / ____ NPO ____ RSG ____ EJL ____

Dear Mr. Reed:

Enclosed is the <u>November 2003</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

oug Heitmey

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: Paul Johnson

MONTH OF NOVEMBER 2003

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	•
Rainfall		
<u>Week of</u>	North Area	Details
1	00	.00 Inches
2 -8	00 Yds.	1.40
9-15	00	1,70
16-22	00	.25
23-29	00	1,14
30-31	00	.15
	00 Yds	4.64Inches

The total number of treated acres to date = <u>180.00</u> acres

Water Monitoring and Testing

No water samples were required.

Deposition

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of November 2003

DAY
1.
2.
3.
4.
5.
6.
7.
8.
9.
$ \begin{array}{r} DAY \\ 1. \\ 2. \\ 3. \\ 4. \\ 5. \\ 6. \\ 7. \\ 8. \\ 9. \\ 10. \\ 11. \\ 11. $
11.
12.
13.
14.
15.
$ \begin{array}{r} 11. \\ 11. \\ 12. \\ 13. \\ 14. \\ 15. \\ 16. \\ 17. \\ 17. \\ 17. \\ 10. \\ 17. \\ 10. \\ $
<u>17.</u> <u>18.</u> <u>19.</u> <u>20.</u> <u>21.</u> <u>22.</u> <u>22.</u>
19.
20.
21.
22.
23.
<u> 24. </u>
25.
26
27.
28.
29
31.

RAINFALL
.00
.11
.24
.00
.07
.11
.14
.73
.43
.00
.00
.00
.00
.40
.87
.08
.10
.00
.00
.07
.00
.00
.00
.00
.02
.18
00
.07
.87
.15
00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

omsor

Paul E. Johnson Plant Superintendent

96-096

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

RWQCB

January 14, 2004

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

REGION 1 JAN 1 6 2004 FCR ССК

Dear Mr. Reed:

Enclosed is the <u>December 2003</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

ang Hectmey

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

ce: Paul Johnson

MONTH OF DECEMBER 2003

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	
Rainfall	· · · · · · · · · · · · · · · · · · ·	,
Week of	North Area	Details
1-6	00	2.37 Inches
7 -13	00 Yds.	4.68
14-20	00	1.33
21-27	00	1.68
28-31	00	.18
	00	2
	00 Yds	10.24Inches

The total number of treated acres to date = <u>180.00</u> _____acres

Water Monitoring and Testing

No water samples were required.

Deposition

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of December 2003

DAY]
<u> </u>		
2.		
3.		
4,		
5.		
6.		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
<u> 14. </u>		
15.		
<u> </u>		
17.		
18.		
<u> </u>		
20.		-
21.		
22.		
23		
24.	-	
25.		
26.		
27.		
28.		
29.		
30.		
31.		

RAINFALL
.48
.08
.00
.15
.40
1.26
.26
.02
.30
.51
1.08
.64
1.87
80
00.
.00
.00
.00
.33
.20
.52
.27
.12
.35
04
. <u>00.</u>
.10
.07
.01
.00

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Paul E. Johnson Plant Superintendent

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

February 24, 2004

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB **REGION 1** MAR - 1 2004 C) FCR X 🖸 RLT L LGR C) RSG m eu

Dear Mr. Reed:

Enclosed is the <u>January 2004</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

long Her

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: Paul Johnson

0

RWQCB REGION 1

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

MAR - 1 2004

	CK	0		
Q	RLT	0	KAD	
Ð	NPO		EJL	un a familian

Rainfall for the Month of January 2004

DAY	
1,	
<u> </u>	
3.	
<u>4.</u>	
$ \frac{3.}{4.} \frac{5.}{5.} \frac{6.}{7.} \frac{7.}{8.} \frac{9.}{10.} $	
6.	
7.	
. 8.	
9	
<u>10.</u>	
^ <u></u>	
<u> </u>	
14	
12	
15.	
<u> </u>	
$ \begin{array}{r} 13. \\ 16. \\ 17. \\ 18. \\ 19. \\ 20. \\ 21. \\ 22 \end{array} $	
18.	
19.	
<u> </u>	
<u></u> <u></u> <u></u>	
25	
<u>26.</u> 27.	
<u></u>	
28.	
29	
<u> </u>	
31.	

RAINFALL
2.16
.58
.06
.10
00.
.05
.25
.77
.84
.03
00
.13
.00
.50
.10
.00
.00
.00
.10
.00
.00
.00.
.05
.42
.00
.03
.60
.03
.00
.30
.00

MONTH OF JANUARY 2004

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	
Rainfall	-	
Week of	North Area	Details
1-3	00	2.80 Inches
4 -10	00 Yds.	2.04
11-17	00	.73
18-24	00	.57
25-31	00	.96
	00	
	00 Yds	7.10Inches

The total number of treated acres to date = 180.00 acres

Water Monitoring and Testing

Water samples were taken for COD & ph

Deposition

Location	N. Pond			
Date	08-Jan	15-Jan	22-Jan	29-Jan
PH	6.8	6.7	6.7	6.6
COD	N/A	N/Ā	< 10 mg/l	N/A

1

Location	S.Pond			
Date	08-Jan	15-Jan	22-Jan	29-Jan
РН	6.7	6.6	6.6	6.5
COD	N/A	N/A	21 mg/l	N/A

Location	N.Road			
Date	08-Jan	15-Jan	22-Jan	29-Jan
PH	6.8	6.7	6.6	6.6
CÓD	N/A	N/A	< 10 mg/l	N/A

Location	S.Road			
Date	08-Jan	15-Jan	22-Jan	29-Jan
PH	6.6	6.5	6.5	6.6
COD	N/A	N/A	11 mg/l	N/A

.

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Paul E. Johnson Plant Superintendent

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

March 25, 2004

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB **REGION** 1 CFE 4/2/04 MAR 2 8 2004

Dear Mr. Reed:

Enclosed is the <u>February 2004</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: Paul Johnson

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of February 2004

1. .17 2. .68 3. 1.43 4. .07 5. .00 6. .52 7, .00 8. .00 9. .00 11. .00 9. .00 11. .00 12. .00 13. .18 14. .03 15. .80 16. 1.29 17. 1.57 18. .75 19. .00 20. .04 23. .03 24. .64 25. 1.04 26. .42 27. .10 28. .00 .00 .00 30. .00			
1. .17 2. .68 3. 1.43 4. .07 5. .00 6. .52 7, .00 8. .00 9. .00 11. .00 9. .00 11. .00 12. .00 13. .18 14. .03 15. .80 16. 1.29 17. 1.57 18. .75 19. .00 20. .04 23. .03 24. .64 25. 1.04 26. .42 27. .10 28. .00 .00 .00 30. .00	DAY	_	RAINFALL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.		.68
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.	_	.07
7. $.00$ 9 . $.00$ 10 . $.00$ 11 . $.00$ 11 . $.00$ 11 . $.00$ 11 . $.00$ 11 . $.00$ 11 . $.00$ 11 . $.00$ 12 . $.00$ 13 . $.18$ 14 . $.03$ 15 . $.80$ 16 . 1.29 17 . 1.57 18 . $.75$ 19 . $.00$ 20 . $.00$ 21 . $.00$ 22 . $.04$ 23 . $.03$ 24 . $.64$ 25 . 1.04 26 . $.42$ 27 . $.00$ 30 . $.00$.00
7. $.00$ 9 . $.00$ 10 . $.00$ 11 . $.00$ 11 . $.00$ 11 . $.00$ 11 . $.00$ 11 . $.00$ 11 . $.00$ 11 . $.00$ 12 . $.00$ 13 . $.18$ 14 . $.03$ 15 . $.80$ 16 . 1.29 17 . 1.57 18 . $.75$ 19 . $.00$ 20 . $.00$ 21 . $.00$ 22 . $.04$ 23 . $.03$ 24 . $.64$ 25 . 1.04 26 . $.42$ 27 . $.00$ 30 . $.00$	6.	-	.52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.		.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.		.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.	-	.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.	-	.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.		.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>		1.29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		"	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
25. 1.04 26. .42 27. .10 28. .00 29. .00 30. .00		• .	
26. .42 27. .10 28. .00 29. .00 30. .00			
27. .10 28. .00 29. .00 30. .00		• · · ·	
28. .00 29. .00 30. .00			
<u></u>			.10
30			
			.00
3100			
	<u> </u>		00
GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF FEBRUARY 2004

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

•	Ash Deposited	
Rainfall		
Week of	North Area	Details
1-7	00	2.87 Inches
8 -14	00 Yds.	.21
15-21	00	4.41
22-28	00	2.27
29	00	00,
	00	
	00 Yds	9.76 Inches

The total number of treated acres to date = 180.00 ____acres

Water Monitoring and Testing

Water samples were taken for Ph.

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

· .

,					
. *	·		-		
(
ъ.	Location	N. Pond			
	Date	06-Feb	13-Feb	20-Feb	27-Feb
	PH	6.8	6.9	6.7	6.8
	COD	N/A	 N/A	N/A	N/A

Date	06-Feb	13-Feb	20-Feb	27-
РН	6.8	6.7	6.7	6
COD	N/A	N/A	N/A	Ň

	Location	N.Road			
	Date	06-Feb	13-Feb	20-Feb	27-Feb
- C	PH	6.9	6.9	6.8	6.7
(COD	N/A		N/A	N/A

Location	S.Road			
Date	<u>06</u> -Feb	13-Feb	20-Feb	27-Feb
PH	6.7	6.8	6.7	6.9
COD	N/A	N/A	N/A	N/A

.

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

meor

Paul E. Johnson Plant Superintendent

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

April 21, 2004

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB **REGION 1** APR 2 8 2004 0.04 FCR **∏** LGR RSG

Dear Mr. Reed:

Enclosed is the <u>March 2004</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

HUG

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: Paul Johnson

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of March 2004

DAY
1.
<u> </u>
3.
4.
5.
6
<u>6.</u> 7. <u>8.</u> <u>9.</u>
<u> </u>
10.
<u> </u>
<u> </u>
<u>12.</u> <u>13.</u>
14
<u> 14.</u> <u> 15.</u>
12.
<u> </u>
$ \begin{array}{r} 10. \\ 17. \\ 18. \\ 19. \\ 20. \\ 21 \end{array} $
<u>10</u>
<u> </u>
<u>40.</u>
21.
22.
2.1.
<u> </u>
<u>25.</u>
26.
27.
<u></u>
<u></u>
<u> </u>
31.

RAINFALL
.17
.00
.03
.00.
00
.00
.00
00
00
.00
.00
.00
00.
<u>00.</u>
00
.00
<u> </u>
.00
.00
.00
.06
.07
.76
.18
.39
.00
.00
.20
00

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF MARCH 2004

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	
Rainfall	-	
Week of	North Area	Details
1-6	00	.20 Inches
7 -13	00 Yds.	.00
14-20	00	.00
21-27	00	1.46
28-31	00	.20
	00	
	00 Yds	1.86 Inches

The total number of treated acres to date = 180.00 acres

Water Monitoring and Testing

Water samples were taken for Ph. & COD

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

Location	N. Pond				
Date	04-Mar	11-Mar	18-Mar	25-Mar	31-Mar
РН	6.8	6.7 ·	6.8	6.8	6.9
COD	N/A	N/Á	N/A	N/A	42 mg/l

Location	S.Pond		· · · · · · · · · · · · · · · · · · ·		
Date	04-Mar	11-Mar	18-Mar	25-Mar	31-Mar
PH	6.8	6.6	6,7	6.6	6.7
COD	N/A`	N/A	N/A	N/A	41 mg/l

Location	N.Road				
Date	04-Mar	11-Mar	18-Mar	25-Mar	31-Mar
PH	6.5	6.6	6.4	6.5	6.4
COD	N/A	N/A	N/A	N/A	31mg/l

Location	S.Road				
Date	04-Mar	11-Mar	18-Mar	25-Mar	31-Mar
PH	6.3	6.4	6.4	6.3	6.2
COD	N/A	N/A	N/A	N/A	110 mg/l

.

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

È au

Paul E. Johnson V Plant Superintendent

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

May 24, 2004 Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Dear Mr. Reed:

Enclosed is the <u>April 2004</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely, eitmen long x

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

RWQCB REGION 1

JUN - 1 2004 D FCR LIGR Cite 6/30/04

cc: Paul Johnson

RWQCB REGION 1

LGR

JUN - 1 2004

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437

Rainfall for the Month of April 2004

DAY	
1.	
2.	
<u> </u>	
4.	
5	
<u> </u>	
7	
8.	
9.	
10.	
11.	
12.	
$ \begin{array}{r} $	
14.	
15.	
<u> </u>	
17.	
18	
19.	
20.	
21.	
22,	
23.	
24,	
$ \begin{array}{r} 16. \\ 17. \\ 18. \\ 19. \\ 20. \\ 21. \\ 22. \\ 23. \\ 24. \\ 25. \\ 26. \\ 27. \\ 28. \\ 29. \\ 22. \\ 23. \\ 24. \\ 25. \\ 26. \\ 27. \\ 29. \\ 28. \\ 24. \\ 25. \\ 26. \\ 27. \\ 29. \\ 29. \\ 29. \\ 20. \\ 22. \\ 23. \\ 24. \\ 25. \\ 26. \\ 27. \\ 29. \\ 29. \\ 29. \\ 29. \\ 29. \\ 29. \\ 29. \\ 20. \\ 21. \\ 22. \\ 23. \\ 24. \\ 25. \\ 26. \\ 27. \\ 29. \\ 29. \\ 29. \\ 29. \\ 29. \\ 29. \\ 29. \\ 29. \\ 20. \\ 21. \\ 22. \\ 23. \\ 24. \\ 25. \\ 26. \\ 27. \\ 29. \\ $	
26.	
27.	,
28.	
29.	
<u>29.</u> <u>30.</u>	
31.	

RAINFALL
.00
.00
.00
.00
.00
.00
.00
.00
· <u>- 00.</u>
.00
.00
.00
.16
.28
.24
.00
.00
.15
.18
.13
.44
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF APRIL 2004

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	
Rainfall	-	
Week of	<u>North Area</u>	Details
1-3	00	.00 Inches
4 -10	00 Yds.	.00
11-17	00	.68
18-24	00	.90
25-30	. 00	.00
· · · · ·	00	
	00 Yds	1.58 Inches

The total number of treated acres to date = <u>180.00</u>___acres

Water Monitoring and Testing

No water samples were taken.

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Paul E. Johnson Plant Superintendent

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

96-96 WOR

June 21, 2004

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB **REGION 1** JUN 3 0 2004

Dear Mr. Reed:

Enclosed is the <u>May 2004</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

Voug Dertrup

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: Paul Johnson

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of May 2004

DAY		RAINFALL
1.	-	.00
2.	-	.00
3.	-	.00
4.	-	.00
5.		00
6.	-	.00
7.		.09
8.		.00
9.	-	.00
10.	-	.00
11.		.00
12.		.00
13.		00
14.		.00
<u>15.</u>		00
<u>16.</u>		.00
17.	- -	00
18.	- -	.00
19.		.00
20.	- -	.00
<u> </u>		00
22		00
23.		00
24.		.00
25.		00
<u>26.</u>	•	00
27		00
<u>28.</u>		.14
29.		.00
30.		00
31.		.00

GEORGIA-PACIFIC McGUIRE RANCH REPORT

MONTH OF MAY 2004

Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

	Ash Deposited	
Rainfall		
Week of	North Area	Details
1	00	.00 Inches
2 8	00 Yds.	.09
9-15	00	.00
16-22	00	.00
23-29	00	.14
30-31	00	.00
	00 Yds	.23 Inches

The total number of treated acres to date = <u>180.00</u> acres

Water Monitoring and Testing

No water samples were taken.

Deposition

There has been no sludge hauled from the Mendocino City Community Services District.

" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

imson

Paul E. Johnson / Plant Superintendent

96-096 WPE

Georgia-Pacific Corporation

Georgia-Pacific West, Inc. A wholly owned subsidiary 90 West Redwood Avenue Fort Bragg, California 95437-3471 Telephone (707) 964-5651

July 1, 2004

Mr. Charles Reed North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

RWQCB **REGION** 1 JUL 0 2 2004 7/14/04 Ск D FCR

Dear Mr. Reed:

Enclosed is the <u>June 2004</u> Monitoring Report for Georgia-Pacific West, Inc. at Fort Bragg (McGuire Ranch) California, as per our Monitoring and Reporting Program No. 96-96.

We are using the drainage controls and management practices outlined in Order NO. 96-96 of our Waste Discharge Requirements, which consists of retention of a minimum 50 foot buffer between incorporation activities and any watercourse.

If you have any questions, please contact me at 961-3353.

Sincerely,

long Hertme

Doug Heitmeyer Environmental Coordinator Fort Bragg Operations

cc: Paul Johnson

GEORGIA-PACIFIC WEST, INC. 90 W. Redwood Avenue Fort Bragg, CA 95437 (707) 964-5651

Rainfall for the Month of June 2004

DAY
1.
2.
3.
4.
5.
6
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<u>7.</u> <u>8.</u>
<u> </u>
<u> </u>
<u> </u>
12.
13.
14.
<u> </u>
<u> </u>
<u> </u>
18.
19.
20.
21.
22.
23.
<u>24.</u> 25.
26.
27.
28.
<u> </u>
<u> </u>

RAINFALL
.00
.00
.00
.00
.00
.00
.00
.00
.00
00
.00
.00
.00
.00
.00
.00
.00
.00
.02
.00
.00
.00.
.00
.00
.00
.00
.00
.00
.00
.00
.00
100

#### **GEORGIA-PACIFIC McGUIRE RANCH REPORT**

#### **MONTH OF JUNE 2004**

## Monitoring and Reporting Order No. 96 - 96, Soil Amending Project

Rainfall	•	
Week of	<u>North Area</u>	Details
1-5	00	.00 Inches
6-12	00 Yds.	.00
13-19	00	.02
20-26	00	.00
27-30	00	.00
	00	.00
	00 Yds	.02 Inches

**Ash Deposited** 

The total number of treated acres to date = 180.00 acres

## Water Monitoring and Testing

No water samples were taken.

## Deposition

There has been no sludge hauled from the Mendocino City Community Services District.





" I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Paul E. Johnson

Plant Superintendent



E%ponent°

Exponent 1970 Broadway, Suite 250 Oakland, CA 94612

telephone 510-208-2000 facsimile 510-208-2039 www.exponent.com

September 2, 2004

Julie Raming, P.G. Georgia-Pacific Corporation 133 Peachtree Street, N.E. Atlanta, Georgia 30303 Subject: GP Wood Products Manufacturing Division – Fort Bragg Project No. 8601936.014

Dear Ms. Raming:

At the request of counsel, Exponent has reviewed sampling data associated with the Georgia-Pacific California Wood Products Manufacturing Division site located in Fort Bragg, California (hereafter referred to as the Fort Bragg sawmill). Our review focused on potential sources of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) and other PCDD/F-like compounds (i.e., coplanar polychlorinated biphenyls [PCBs]) and available data to assess the presence of PCDD/Fs and PCDD/F-like compounds at the site. Materials reviewed as part of this evaluation included:

- Georgia-Pacific Corporation. 1989. TCDF study on fly ash amended soil and related environmental vectors. Little Valley Site, Fort Bragg, California. December.
- Enseco. 1990a. Letter to Gerald Tice, Georgia Pacific, from Michael J. Miller, regarding analytical results for ash samples from Fort Bragg-Little Valley project. June 25.
- Enseco. 1990b. Letter to Gerald Tice, Georgia Pacific, from Michael J. Miller, regarding analytical results for fish samples from Fort Bragg-Little Valley project. July 5.
- Enseco. 1990c. Letter to Gerald Tice, Georgia Pacific, from Michael J. Miller, regarding analytical results for sediment samples from Fort Bragg-Little Valley project. July 11.
- RWQCB. 1990. Executive Officer's Summary Report regarding Waste Discharge Requirements for Georgia-Pacific Corporation, application of woodwaste ash as soil amendment, Fort Bragg, Mendocino County. August 16.

- TRC. 2004a. Phase I Environmental Site Assessment. Georgia-Pacific California Wood Products Manufacturing Division, 90 West Redwood Avenue, Fort Bragg, California. March.
- TRC. 2004b. Phase II Environmental Site Assessment. Georgia-Pacific California Wood Products Manufacturing Division, 90 West Redwood Avenue, Fort Bragg, California. May.
- RWQCB. 2004. Letter to Julie B. Raming, Georgia-Pacific Corporation, from Craig Hunt, regarding site assessment comments for portions of site. Georgia-Pacific California Wood Products Manufacturing Division, 90 West Redwood Avenue, Fort Bragg, California. California Regional Water Quality Control Board, North Coast Region. August 12.
- Curtis & Tompkins, Ltd. 2004. Analytical data sheets for supplemental Phase II samples. Georgia-Pacific California Wood Products Manufacturing Division, 90 West Redwood Avenue, Fort Bragg, California.

As discussed further below, there are five potential sources of PCDD/Fs or PCDD/F-like compounds at the site: 1) flyash from the power house, which was historically used as a soil amendment at an offsite location; 2) bottom ash from the power house, which was placed on site; 3) limited open burning on site, 4) PCBs historically used in electrical transformers; and 5) limited use of wood treatment chemicals such as pentachlorophenol. Based on our review, the available data suggest that the PCDD/F concentrations in the flyash are very low and consistent with PCDD/F concentrations in rural background settings. No data are available to assess the potential presence of PCDD/Fs in the bottom ash or as a result of open burning. Collection of a limited number of samples would address these potential sources. Finally, the much more extensive data available for PCBs and chlorinated phenols suggest that PCDD/Fs or PCDD/F-like compounds are unlikely to be present at the site as a result of historical use of these chemicals.

## Existing PCDD/F Data at the Fort Bragg Sawmill

Georgia-Pacific evaluated the use of flyash from the Fort Bragg sawmill power house as a soil amendment in the late 1980s and early 1990s (Georgia-Pacific Corporation 1989; RWQCB 1990). As part of this program, samples of flyash, sediment, and fish were collected from the offsite location where flyash was being stockpiled and used as a soil amendment (Little Valley site) and analyzed for PCDD/Fs (Enseco 1990a,b,c). The Regional Water Quality Control Board (RWQCB) used these results to estimate 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) toxicity equivalent (TEQ) concentrations in each of these samples (RWQCB 1990). TEQ concentrations are estimated by multiplying the concentrations of individual PCDD/F

8601936.014 0101 0804 LY27

congeners by congener-specific toxicity equivalent factors (TEFs). TEFs are derived based on the toxicity of a given congener relative to the toxicity of 2,3,7,8-TCDD, which is considered to be the most toxic and most well studied of the PCDD/F congeners (U.S. EPA 2000). The TEQ concentrations reported by the RWQCB were as follows:

Medium	Location	TEQ (ng/kg)
Ash	Stockpile	3.83
	Stockpile	3.02
Fish	Upstream of amended areas	0.01
	Downstream of amended areas	0.03
Sediment	Upstream, 0–2 in.	0.15
	Upstream, 2–4 in.	0.07
	Downstream, 0-2 in.	0.03
	Downstream, 2–4 in.	0.06

The RWQCB concluded that all samples from this survey contained low levels of PCDD/Fs and that the concentrations in both fish and sediment were near background levels (RWQCB 1990). A review of the literature identified several studies of ash and soot from residential fireplaces reporting TEQ concentrations ranging from less than 10 to several thousand nanograms per kilogram (ng/kg) (U.S. EPA 2000). A more detailed discussion of this and other sources of PCDD/Fs in the environment is presented in Attachment 1.

Since the RWQCB issued their report, more recent TEFs have been published by the World Health Organization (WHO) (Van den Berg et al. 1998) and endorsed by the U.S. Environmental Protection Agency (U.S. EPA 2000). Therefore, Exponent re-calculated the TEQ concentrations for the two flyash samples, which contained the highest PCDD/F concentrations of the samples analyzed. Because many of the congeners were not detected in these samples, TEQs were calculated assuming that: 1) undetected congeners were present at concentrations equal to one-half of the reported detection limits; and 2) the undetected congeners were not present (i.e., concentration was assumed to be zero). As shown in Table 1, the re-calculated TEQ concentrations for the two flyash samples were 9.8 ng/kg and 16 ng/kg assuming that undetected congeners were present at one-half of the reported detection limit. If a value of zero was used for the undetected congeners, the TEQ concentrations were 3.8 and 3.1 ng/kg, respectively. These values are essentially the same as those reported by the RWQCB in 1990, indicating that the updated TEFs should not affect the RWQCB's original conclusions regarding the available data.

### Comparison of Existing PCDD/F Data with Background Concentrations, Risk-Based Concentrations, and Cleanup Levels

To put the existing PCDD/F data into perspective, Exponent compared the flyash and sediment data to background concentrations of PCDD/Fs in soil, risk-based concentrations, and target cleanup levels developed by various regulatory agencies. The results of these comparisons are summarized in Table 2 and discussed in more detail in the following sections.

#### **Comparison with Background Concentrations**

PCDD/Fs are found in rural and urban soils as a result of numerous sources of these chemicals in the environment (see Attachment 1). To identify samples that could be considered representative of "background," U.S. EPA reviewed soil sampling data from across the U.S. (U.S. EPA 2000). These data came from a variety of studies using different protocols and having different detection limits. In total, EPA identified 262 samples that are considered representative of "background" concentrations for rural areas, and 171 samples that are considered representative of "background" concentrations for urban areas. Based on these data, EPA estimated weighted mean concentrations of 3.1 ng/kg TEQ and 7.6 ng/kg TEQ for rural and urban background soils, respectively. These TEQ values were derived assuming that the undetected congeners were not present; i.e., the TEQ was calculated assuming that the concentration of undetected congeners was zero (U.S. EPA 2000). As shown in Table 2, the TEQ concentrations estimated for the two flyash samples, calculated using an approach consistent with that used in the derivation of the EPA values (i.e., assuming that the undetected congeners were not present), are essentially the same as EPA's estimated value for rural background, and less than EPA's estimated value for urban background. Further, the estimated TEQ concentrations for both the upstream and downstream sediment samples are well below both rural and urban background concentrations. Therefore, the flyash and sediment data collected in 1990 suggest that the PCDD/F concentrations in flyash are consistent with PCDD/F concentrations in rural background settings, and that use of the ash as a soil amendment does not appear to have affected sediments downstream of the amended areas.

#### Comparison with EPA Risk-Based Concentrations

EPA Region IX has calculated preliminary remediation goals (PRGs) for 2,3,7,8 TCDD for residential or industrial land use (U.S. EPA 2004). PRGs combine current EPA toxicity values with standard exposure factors to estimate concentrations in environmental media (e.g., soil) that are protective of human health, including sensitive subgroups, over a lifetime. If chemicals are present at concentrations below the PRGs, then exposure to these chemicals should not result in adverse health effects. The presence of chemicals at concentrations exceeding PRGs does not indicate that adverse health effects will occur, but "suggests that further evaluation of the potential risks that may be posed by site contaminants is appropriate" (U.S. EPA 2004).

PRGs for residential and industrial land use assume continuous and long-term exposure to chemicals in affected soil via ingestion, dermal contact, and inhalation of particulates or vapors.

The EPA Region IX PRGs for 2,3,7,8-TCDD are 3.9 ng/kg and 16 ng/kg for residential and industrial soil, respectively. As shown in Table 2, the concentration of 2,3,7,8-TCDD in the two flyash samples was 2.5 and 1.9 ng/kg, both of which are less than the Region IX PRGs. The estimated TEQs for the two flyash samples were 9.8 ng/kg and 16 ng/kg assuming that the undetected congeners were present at concentrations equal to one-half of the reported detection limit, and 3.8 ng/kg and 3.1 ng/kg assuming that the undetected congeners were not present (see Table 2). Thus, the TEQ concentrations in the two flyash samples are equal to or lower than the industrial PRG of 16 ng/kg when the TEQ is calculated assuming one-half the detection limit for undetected congeners, and below the residential PRG of 3.9 ng/kg when the TEQ is calculated assuming that undetected congeners are not present. Further, the estimated TEQs for the sediment samples are much lower than both the industrial and residential PRGs.

#### **Comparison with ATSDR Screening Value and EPA Cleanup Levels**

The Agency for Toxic Substances Disease Registry (ATSDR) considers a TEQ concentration of 50 ng/kg as the starting point in considering whether some evaluation is needed for residential sites (ATSDR 1997). In their evaluation, ATSDR considered all toxicological data available at that time and concluded that, for residential soils, concentrations up to 50 ng/kg TEQ would be protective for all potential adverse effects. ATSDR also identified an "evaluation level" for PCDD/Fs in the range of 50 to 1,000 ng/kg TEQ, where ATSDR recommends that site-specific factors such as bioavailability, climate, community concerns, and other factors be considered in determining whether any additional evaluation, or further protective measures, are needed. The value 1,000 ng/kg TEQ was identified by ATSDR as an "action level," above which potential public health measures should be considered. As shown in Table 2, all of the estimated TEQ concentrations for the flyash and sediment samples, regardless of the manner in which undetected congeners were treated in the calculations, are well below these screening, evaluation, and action levels identified by ATSDR.

TEQ concentrations in site data are also well below EPA's target cleanup levels of 1,000 to 20,000 ng/kg TEQ in soil (see Table 2). EPA outlines these levels in their 1998 Superfund directive (U.S. EPA 1998) as follows:

[1,000 ng/kg] (TEQs, or toxicity equivalents) is to be generally used as a starting point for setting cleanup levels for CERCLA removal sites and as a PRG for remedial sites for dioxin in surface soil involving a residential exposure scenario. For commercial / industrial exposure scenarios, a soil level within the range of [5,000 to 20,0000 ng/kg] (TEQs) should generally be used as a starting point for setting cleanup levels at CERCLA removal sites and as a PRG for remedial sites

8601936.014 0101 0804 LY27

> for dioxin in surface soil. These levels are recommended unless extenuating sitespecific circumstances warrant a different level.¹ (http://www.epa.gov/superfund/ resources/remedy/pdf/92-00426-s.pdf)

EPA goes on to indicate that these levels are derived based on direct contact with soils, rather than bioaccumulation in the food chain. EPA then states:

While the focus of this directive is on soils, these recommended levels also apply to sediments in the event that this environmental medium is considered to be a direct exposure pathway for human receptors.

EPA states that, where states take the lead in cleanups, more stringent levels may need to be applied, but EPA indicates that this should occur only "where evidence exists that risks posed by the site differ from risks estimated using standard national default guidance values." Thus, the EPA default cleanup levels are clearly intended to be applied in most cases.

### Other Possible Sources of PCDD/Fs or PCDD/F-like Compounds at the Fort Bragg Sawmill

Based on our review of the site history information presented in the Phase I and Phase II Environmental Site Assessments (TRC 2004a,b), there are four other possible sources of PCDD/Fs or PCDD/F-like compounds at the Fort Bragg sawmill: 1) bottom ash from the power house, which was placed on site; 2) limited open burning in one portion of the property; 3) PCBs associated with electrical transformers that had been present in several parcels across the site; and 4) limited use of wood treatment chemicals such as pentachlorophenol. As discussed above, the available data set for PCDD/Fs from the site is limited to a small number of flyash, sediment, and fish samples collected from an offsite location where flyash was stockpiled and used as a soil amendment. As also discussed above, PCDD/Fs were present in these samples at low concentrations that are similar to or below background concentrations for rural areas. No PCDD/F data have been collected from onsite locations to evaluate the potential presence of PCDD/Fs associated with the bottom ash or open burning. Therefore, collection of a limited number of samples from targeted onsite locations would address these potential sources.

Because some PCBs may be associated with dioxin-like toxicity, and historically, chlorinated phenols have been known to be contaminated with PCDDs or to create TCDD/Fs on combustion, we also reviewed the available site data for these chemicals. More than 150 soil samples have been collected from across the site and analyzed for PCBs (TRC 2004b; Curtis &

8601936.014 0101 0804 LY27

¹ "Dioxin" is PCDD/F expressed on a TEQ basis. A "PRG" is a preliminary remediation goal. "CERCLA" is the Comprehensive Environmental Response, Compensation and Liability Act, 42 U.S.C. § 9601 et seq.

Tompkins 2004). The majority of these samples were collected from surface soil (upper 0.5 or 1.0 feet) in the immediate vicinity of former transformer locations (e.g., Parcels 3, 4, 5, 7, and 9). Samples were also collected at depth (2 to 8 feet below ground surface [ft bgs]) to determine whether PCBs had migrated through the surface soil. Surface and subsurface samples were also collected from parcels where transformers had not been used (e.g., Parcels 1, 2, 6, and 8). PCBs were detected in only three samples (out of a total of over 150 samples) at concentrations of 0.07, 0.089, and 0.14 milligrams per kilogram (mg/kg). These data suggest that PCDD/F-like compounds are unlikely to be present at the site as a result of the historical use of PCBs in electrical transformers.

More than 110 samples have been collected and analyzed for semivolatile compounds (SVOCs), including chlorinated phenols. These samples were collected from the majority of the parcels at the site to characterize impacts of a variety of historical land uses (e.g., former aboveground storage tanks, former underground storage tanks, residual ash material) both in surface (upper 0.5 to 1.0 ft) and subsurface (2 to 12 ft bgs) soil. Chlorinated phenols were not detected in any of these samples. These data suggest that PCDD/Fs or PCDD/F-like compounds are unlikely to be present at the site as a result of the limited use of wood treatment chemicals such as pentachlorophenol.

#### Conclusions

Five potential sources of PCDD/Fs were identified at the Fort Bragg sawmill: 1) flyash from the power house, which was used off site as a soil amendment; 2) bottom ash from the power house, which was placed on site; 3) limited open burning on site; 4) historical use of PCBs in electrical transformers; and 5) limited use of wood treatment chemicals such as pentachlorophenol. The available PCDD/F data from 1990 suggest that the use of flyash as a soil amendment did not contribute PCDD/Fs to onsite or offsite media at concentrations greater than cleanup levels established by EPA or risk-based concentrations for nonresidential soils. In fact, the concentrations of PCDD/Fs in the available samples do not indicate concentrations that exceed background concentrations established by EPA for rural or urban areas. The much more extensive data available for PCBs and chlorinated phenols also suggest that PCDD/Fs or PCDD/F-like compounds are unlikely to be present at the site as a result of historical use of these chemicals. The potential presence of PCDD/Fs as a result of placement of the bottom ash or open burning can be addressed by collecting a limited number of samples.

Please feel free to contact either of us if you have any questions.

Sincerely,

Lisa yot

Lisa J. Yost, M.P.H., DABT Managing Scientist (425) 519-8772

K- K

Gregory P. Brorby, DABT Senior Managing Scientist (510) 208-2006

Attachments (1)

cc: Julie Raming - Georgia-Pacific

#### References

ATSDR. 1997. Dioxin and dioxin-like compounds in soil. Part I: ATSDR interim policy guidelines. Part II: Technical support document for ATSDR interim policy guideline. J. Clean Tech. 6(2):117-138.

Curtis & Tompkins, Ltd. 2004. Analytical data sheets for supplemental Phase II samples. Georgia-Pacific California Wood Products Manufacturing Division, 90 West Redwood Avenue, Fort Bragg, California.

Enseco. 1990a. Letter to Gerald Tice, Georgia Pacific, from Michael J. Miller, regarding analytical results for ash samples from Fort Bragg-Little Valley project. June 25.

Enseco. 1990b. Letter to Gerald Tice, Georgia Pacific, from Michael J. Miller, regarding analytical results for fish samples from Fort Bragg-Little Valley project. July 5.

Enseco. 1990c. Letter to Gerald Tice, Georgia Pacific, from Michael J. Miller, regarding analytical results for sediment samples from Fort Bragg-Little Valley project. July 11.

Georgia-Pacific Corporation. 1989. TCDF study on fly ash amended soil and related environmental vectors. Little Valley Site, Fort Bragg, California. December.

RWQCB. 1990. Executive Officer's Summary Report regarding Waste Discharge Requirements for Georgia-Pacific Corporation, application of woodwaste ash as soil amendment, Fort Bragg, Mendocino County. August 16.

RWQCB. 2004. Letter to Julie B. Raming, Georgia-Pacific Corporation, from Craig Hunt, regarding site assessment comments for portions of site. Georgia-Pacific California Wood Products Manufacturing Division, 90 West Redwood Avenue, Fort Bragg, California. California Regional Water Quality Control Board, North Coast Region. August 12.

TRC. 2004a. Phase I Environmental Site Assessment. Georgia-Pacific California Wood Products Manufacturing Division, 90 West Redwood Avenue, Fort Bragg, California. March.

TRC. 2004b. Phase II Environmental Site Assessment. Georgia-Pacific California Wood Products Manufacturing Division, 90 West Redwood Avenue, Fort Bragg, California. May.

U.S. EPA. 1998. Approach for addressing dioxin in soil at CERCLA and RCRA sites. OSWER Directive 9200.4-26. Available at: www.epa.gov/superfund/resources/remedy/pdf/92-00426-s.pdf. U.S. Environmental Protection Agency, Superfund Dioxin Workgroup.

 $\mathbb{E}^{\mathcal{X}^{m}}$ 

U.S. EPA. 2000. Exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-*p*dioxin and related compounds. Draft Final. U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC.

U.S. EPA. 2004. U.S. EPA Region 9 preliminary remediation goals. www.epa.gov/ region09/waste/sfund/prg/. Accessed on August 27, 2004. Last updated in October, 2002. (Version 8). U.S. Environmental Protection Agency Region IX, San Francisco, CA.

Van den Berg, M., L. Birnbaum, A.T.C. Bosveld, B. Brunstrom, P. Cook, M. Feeley, J.P. Giesy, A. Hanberg, R. Hasegawa, S.W. Kennedy, T. Kubiak, J.C. Larsen, F.X. van Leeuwen, A.K. Liem, C. Nolt, R.E. Peterson, L. Poellinger, S. Safe, D. Schrenk, D. Tillitt, M. Tysklind, M. Younes, F. Waern, and T. Zacharewski. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 106:775–792.

Table 1:	PCDD/F	sample	results	for flva	sh at For	t Bragg sawmill
		oampio				

	Area:	Fort Bragg	Fort Bragg
	Sample ID:	Enseco ID 150832	Enseco ID 150834
	Date:	05/30/90	05/30/90
	units:	pg/g (ng/kg)	pg/g (ng/kg)
Chemical	Medium:	Ash	Ash
DIOXINS	TEF		
1234678-HpCDD	0.01	9.6	9.2
123478-HxCDD	0.1	0.55 U	1.3 U
123678-HxCDD	0.1	1.4 U	1.6
123789-HxCDD	0.1	1.4 U	1.3 U
12378-PeCDD	1	7.7 U	18 U
2378-TCDD	1	2.5	1.9
OCDD	0.0001	30	35
TOTAL HpCDD		15	18
TOTAL HxCDD		8.0	8.8
TOTAL PeCDD		7.7 U	18 <i>U</i>
TOTAL TCDD		14	20.0
FURANS			
1234678-HpCDF	0.01	2.7	4.0 U
1234789-HpCDF	0.01	1.4 U	4.0 U
123478-HxCDF	0.1	2.2	1.7 U
123678-HxCDF	0.1	1.2	1.5
123789-HxCDF	0.1	0.43 U	0.35 U
12378-PeCDF	0.05	11 U	11 U
234678-HxCDF	0.1	1.2 U	1.7 U
23478-PeCDF	0.5	6.7 U	13 U
2378-TCDF	0.1	8.2	8.2
OCDF	0.0001	6.5	5.6 U
TOTAL HpCDF		8.6	4.0 U
TOTAL HxCDF		8.8	13
TOTAL PeCDF		46	100
TOTAL TCDF		140	170
······································	TEQ (½ dl)	9.8	16.0
·	TEQ (dl=0)	3.8	3.1

OCDF - PCDD/F - PeCDD - PeCDF -	heptachlorodibenzofuran hexachlorodibenzofuran hexachlorodibenzofuran octachlorodibenzo- <i>p</i> -dioxin octachlorodibenzofuran polychlorinated dibenzo- <i>p</i> -dioxin and dibenzofuran pentachlorodibenzo- <i>p</i> -dioxin pentachlorodibenzofuran tetrachlorodibenzofuran tetrachlorodibenzofuran
• •	5 1
TEQ -	toxicity equivalence based on data for 2,3,7,8-tetrachlorodibenzo- <i>p</i> -dioxin

^a TEQ calculations based on WHO TEFs provided in van den Berg et al. (1998). Based on TEQs for mammals.
#### Table 2. Comparison of Fort Bragg sawmill samples with background concentrations, screening values, and cleanup values for TEQs in soil

	PCDDs/Fs TEQ
Source	(ng/kg)
Fort Bragg flyash sample results ^a	Sample 150832: 3.8 / (9.8)
	Sample 150834: 3.1 / (16.0)
Fort Bragg offsite sediment sample results ^b	0.06 to 0.15
EPA weighted average "background" soil concentrations for U.S.	3.1 rurał
coils (U.S. EPA 2000)°	7.6 urban
EPA Region IX PRG for residential soils (U.S. EPA 2004)	3.9
EPA Region IX PRG for industrial soils (U.S. EPA 2004)	16
ATSDR screening level (ATSDR 1997)	Less than or equal to 50
TSDR evaluation levels (ATSDR 1997)	Greater than 50 but less than 1,000
ATSDR action level (ATSDR 1997)	Greater than or equal to 1,000
EPA action level for residential soil (U.S. EPA 1998)	1,000
EPA action levels for industrial soils (U.S. EPA 1998)	5,000–20,000

Note:	ATSDR	-	Agency for Toxic Substances and Disease Registry
	EPA	-	U.S. Environmental Protection Agency
	PCDD/F	-	polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran
	PRG	-	preliminary remediation goal
	TEF	-	toxicity equivalent factor
	TEQ	-	toxicity equivalent based on data for 2,3,7,8-tetrachlorodibenzo-p-dioxin
^a First	value sho	wr	n is with undetected congener results assumed to be zero. Second value

(in parentheses) is with undetected congener results assumed to be zero. Second value (in parentheses) is with one-half of the detection limit used for undetected congeners in the TEQ calculation. TEQ calculations based on WHO TEFs provided in van den Berg et al. (1998).

^b Represents data for area where flyash was mixed with offsite soils and evaluated for contribution to TEQ.

TEQ calculations based on EPA 1989 TEFs.

^c Available only as undetected congener results assumed to be zero.

## **Attachment 1 – Background Sources of Dioxins**

Dioxins found in rural soils are the result of numerous sources of dioxins in the environment. Chlorinated dioxins and furans are produced as trace by-products of combustion under a wide variety of conditions. Emissions of dioxins from point combustion sources such as waste incinerators and industrial processes were the initial focus of research to quantify emissions and of EPA regulations to control emissions. However, nonpoint sources are now recognized as important contributors to background concentrations of dioxins in soils and air. The increased focus on uncontrolled combustion sources is, in part, the result of the success of measures to restrict emissions from recognized point sources and, in part, the result of improved estimates of emissions from nonpoint sources. Recent research indicates that such nonpoint sources are significantly greater than previously estimated and that they contribute to the low levels of dioxins found in both rural and urban soils (U.S. EPA 2000). Nonpoint sources of importance include landfill fires, combustion of wood and other biomass (in residential wood combustion, in agricultural [vegetative] burning, or in forest fires), automotive exhaust (both diesel and non-diesel), and backyard barrel burning of rubbish.

This section provides qualitative descriptions of the evidence related to such sources as contributors to environmental levels of dioxins.

**Combustion of Wood and Other Biomass** — Numerous studies have demonstrated the production of dioxins from combustion of wood in both industrial and residential settings. In residential settings, levels of dioxin in ash, soot, and flue gas vary depending on the type of wood burned and the combustion conditions (wood stove versus furnace, operating condition of stove or fireplace, etc.). Several studies have analyzed ash and soot collected from residential fireplaces, finding levels of dioxins ranging from less than 10 to several thousand ng/kg TEQ levels in ash or soot (U.S. EPA 2000 [citing Nestrick and Lamparski 1982, 1983; Bacher et al. 1992; Van Oostdam and Ward 1995; Dumler-Gradl et al. 1995]; Wunderli et al. 2000; Pfeiffer et al. 2000). Several studies have also estimated emission rates of dioxins per kilogram of wood burned, and U.S. EPA (2000) relied on these studies to develop its emission rate estimate of 2 ng/kg-wood TEQ for residential wood burning.

Based on this estimate of dioxin formation from wood combustion and limited data regarding the production of dioxins from forest fires, EPA has estimated that forest fires represent a major source of dioxin formation and emission in the United States. Recent data from EPA scientists indicates that forest fires produce approximately 20 ng TEQ/kg biomass burned (Gullett and Touati 2003), approximately 10 times more than was assumed previously based on the estimate of 2 ng TEQ/kg for residential wood burning. Several researchers have attempted to evaluate whether soil levels of dioxins in burned areas are higher than levels in nearby unburned areas the results of these studies have not indicated a clear, direct effect of fire on total soil dioxin levels, although some studies suggest that the profile of congeners may be shifted by fire (Martinez et al. 2000; Gabos et al. 2001). It appears likely that the airborne emission of dioxins

l

from forest fires contributes in a dispersed fashion to background dioxin levels in soils throughout an area.

Another contributing nonpoint source of dioxins results from the practice of burning agricultural fields after harvest to clear the fields and return nutrients to the soil. Gullett and Touati (2002) conducted experiments to estimate the release of dioxins from wheat and rice straw stubble under conditions of open burning, and they confirmed that such practices contribute to dioxin emissions, although the relative magnitude of the contribution from field burning is smaller than from forest fires and residential wood burning.

**Combustion of Automotive Fuel** — Another nonpoint source of dioxin emissions to the environment is the combustion of diesel and gasoline fuel in automobiles. Emission rates for dioxins from automobiles burning leaded gasoline were reported to be quite high and probably contributed substantially to earlier deposition of dioxins throughout the continent. Current estimates indicate that emissions from heavy-duty diesel vehicles are a significant source of dioxin (Gullett and Ryan 1997), while automobiles burning unleaded gasoline produce much lower levels (U.S. EPA 2000).

Burning Rubbish in Barrels — Burning of household rubbish in backyard open-burn barrels or other similar containers has recently been recognized as a major contributor of dioxin emissions in the U.S. Uncontrolled open-burn conditions result in widely variable, but substantial, rates of formation of dioxins and furans during combustion of a wide variety of household waste materials. In the 2000 draft dioxin reassessment (U.S. EPA 2000), this source was recognized as a major contributor to dioxin emissions, but EPA scientists have recently published the results of experiments that indicate that the emission rates from such sources may be even higher than estimated previously (Gullett et al. 2001).²

**Noncombustion Sources** — Substantial evidence exists to support the hypothesis that natural formation of dioxins occurs through several poorly understood mechanisms. High concentrations of dioxins with distinctive congener patterns were found in ball clay deposits in the United States and in Europe, and EPA scientists have concluded that these deposits resulted from natural geologic processes (Ferrario et al. 2000). Hoekstra et al. (1999) recently reported on experiments that demonstrated the *de novo* formation of dioxin compounds in the humic layer of Douglas fir forests. Although our understanding of such processes is limited, there is substantial evidence that such compounds are formed in nature and are not simply the product of human activities and sources.

8601936.014 0101 0804 LY27

² http://environmentalrisk.cornell.edu/C&ER/PlasticsDisposal/AgPlasticsRecycling/References/Gullett2001.pdf

#### References

Ferrario, J., C. Byrne, and D. Cleverly. 2000. Summary of evidence for the possible natural formation of dioxins. Organohal. Comp. 46:23–26.

Gabos, S., M.G. Ikonomou, D. Schopflocher, B.R. Fowler, J. White, E. Prepas, D. Prince, and W. Chen. 2001. Characteristics of PAHs, PCDD/Fs and PCB in sediment following forest fires in northern Alberta. Chemosphere 43.

Gullett, B.K., and J.V. Ryan. 1997. On-road sampling of diesel engine emissions of polychlorinated dibenzo-*p*-dioxin and polychlorinated dibenzofuran. Organohal. Comp. 32:451–456.

Gullett, B., and A. Touati. 2002. PCDD/F emissions from agricultural field burning. Organohal. Comp. 56:135–138.

Gullett, B.K., and A. Touati. 2003. PCDD/F emissions from forest fire simulations. Atmospheric Environ. 37:803-813.

Gullett, B.K., P.M. Lemieux, C.C. Lutes, C.K. Winterrowd, and D.L. Winters. 2001. Emissions of PCDD/F from uncontrolled, domestic waste burning. Chemosphere 43:721–725.

Hoekstra, E.J., H. De Weerd, E.W.B. De Leer, and U.A.T. Brinkman. 1999. Natural formation of chlorinated phenols, dibenzo-*p*-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environ. Sci. Technol. 33:2543–2549.

Martinez, M., J. Diaz-Ferrero, R. Marti, F. Broto-Puig, L. Comellas, and M.C. Rodriguez-Larena. 2000. Analysis of dioxin-like compounds in vegetation and soil samples burned in Catalan forest fires: Comparison with the corresponding unburned material. Chemosphere 41:1927–1935.

Pfeiffer, F., M. Struschka, G. Baumbach, H. Hagenmaier, and K.R.G. Hein. 2000. PCDD/PCDF emissions from small firing systems in households. Chemosphere 40:225–232.

U.S. EPA. 2000. Exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin and related compounds. Draft Final. U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC.

Wunderli, S., M. Zennegg, I.S. Dolezal, E. Gujer, U. Moser, M. Wolfensberger, P. Hasler, D. Noger, C. Studer, and G. Karlaganis. 2000. Determination of polychlorinated dibenzo-*p*-dioxins and dibenzo-furans in solid residues from wood combustion by HRGC/HRMS. Chemosphere 41:641–649.

## **DRAFT REPORT**

# Geophysical Investigation at Parcels 3 and 10 of the Georgia-Pacific site in Fort Bragg, California

#### Submitted to:

TRC Companies, Inc. Mr. Mohammad R. Bazargani 1590 Solano Way, Suite A Concord, CA 94520 Tel: 925-688-2461 • Fax: 925-688-0388 Email: mbazargani@trcsolutions.com

#### Submitted by:

3Dgeophysics.com 721 3rd Avenue Mendota, Heights, MN 55118 Tel: 651-450-1850 • Fax: 651-450-1851 Email: brian@3dgeophysics.com

August 30, 2004

Draft Report

## TABLE OF CONTENTS

1.	INTRODUCTION	. 1
2.	METHODOLOGY	. 1
2.1	EM61 METAL DETECTION SURVEY	. 2
2.2	EM31 GROUND CONDUCTIVITY SURVEY	. 2
3.	RESULTS	4
3.1	EM61 METAL DETECTION SURVEY	
3.2	EM31 GROUND CONDUCTIVITY SURVEY	. 5
4.	CONCLUSIONS	. 6

## LIST OF FIGURES & TABLES

Figure 1 Geophysical Study Areas and Site Photograph

Figure 2 Field Photographs: Data Acquisition Equipment

Figure 3 EM61 Theory of Operation Schematic

Figure 4 EM31 Theory of Operation Schematic

Figure 5 EM61 Data Coverage Map: Parcel 3

Figure 6 EM61 Data Coverage Map: Parcel 10

Figure 7 EM61 Anomaly Map: Parcel 3

Figure 8 EM61 Anomaly Map: Parcel 10

Figure 9 EM31 Data Coverage Map: Parcel 3

Figure 10 EM31 Data Coverage Map: Parcel 10

Figure 11 EM31 Anomaly Map: Parcel 3

Figure 12 EM31 Anomaly Map: Parcel 10

Table 1	Data Acquisition Equipment	3
	EM61 Data Acquisition Parameters	
	EM31 Data Acquisition Parameters	
	Site Surface Features	

i

#### Draft Report

#### 1. INTRODUCTION

3Dgeophysics.com (3Dg) performed a geophysical investigation at the Georgia-Pacific California Wood Products site located in Ft. Bragg, CA (the "site"). The work was conducted within Parcel 3 (Industrial parcel) and Parcel 10 (South Coastal Zone parcel) of the site. The geophysical investigation consisted of an EM61 metal detector survey and an EM31 ground conductivity survey in each of the study areas. This work was completed under the authorization of Mr. Mohammad R. Bazargani from TRC Companies, Inc. (TRC). The geophysical data were collected on August 17 - 18, 2004. The objective of the investigation was to map potential buried metal objects and variations in the near surface sediments at the site. The results of this study will be used to help determine the environmental management alternatives at the site.

The approximate location of the study areas is shown on an aerial photograph of the site in **Figure 1**. The purpose of the work was to create a detailed image of the subsurface, and to provide a high resolution map of buried metal objects at the site.

#### 2. METHODOLOGY

The geophysical investigation consisted of two geophysical techniques including electromagnetic (EM) metal detection and ground conductivity mapping. A Differential Global Positioning System (DGPS) was integrated with the geophysical equipment and used for position control during the EM surveys. **Table 1** summarizes the methodology and instrumentation used for the investigation.

A non-magnetic and non-conductive instrument trailer and a 4x4 all-terrain vehicle (ATV) were used to collect the geophysical data. An OmniStar enabled DGPS with sub-meter accuracy (Trimble Ag 114) was connected directly to the EM instruments to provide position control for each of the EM surveys. Accuracy and reliability of the DGPS system was subject to anomalies such as multipath, obstructions, satellite geometry, and atmospheric conditions. DGPS surveying conditions at the site were excellent. As many as 10 and no fewer than 7 satellites were visible to the GPS receiver during the survey (only 5 satellites are required for DGPS measurements). Figure 2 shows photographs of the data acquisition system used for the geophysical surveys.

Prior to the start of data collection the boundaries of the study areas were identified in the field by Mohammad Bazargani (TRC) and Dr. Craig Hunt (CA Regional Water Quality Control Board). The perimeters of the study areas were then walked and precisely mapped using the DGPS and a ruggedized Pocket-PC running GIS software (HGIS, StarPal, Inc.). After the survey area boundaries were mapped the GIS software was used to generate 10 x 10 ft survey grids over the study areas within the defined perimeters. Data collection required driving the ATV and instrument trailer across the site according generated survey grids. The Pocket-PC running the HGIS software was mounted to the utility vehicle and the survey grid overlays were used to

navigate across the site. The data acquisition system was driven along the 10 ft survey grid lines in each of the two survey areas to completely sample the areas of interest. Each survey area was driven with the data acquisition system twice during the investigation; once with each of the EM instruments. The EM61 data were collected first at both study areas, the equipment on the instrument trailer was changed, and then the EM31 data were collected.

#### 2.1 EM61 METAL DETECTION SURVEY

EM61 is a non-invasive EM imaging technique used to identify metallic objects in the near subsurface. The EM61 metal detection system measures the localized and momentary changes in magnetic fields caused by eddy currents induced around buried metal objects. The eddy currents are caused by the interaction of the primary EM field created by a transmitter coil on the EM61 system and buried conductive bodies like utilities, steel tanks, buried debris or other metal objects. Figure 3 shows an illustration of the theory of operation of the EM61 and EM31 system.

The EM61 system measures the induced eddy currents which flow around buried conductive objects such as utilities, pipes, and buried debris. A transmitter coil is used to produce the primary field and generate the induced eddy currents. After the primary field is shut off the eddy currents are monitored by the receiver coil for a period of 10 to 20 milliseconds. Within sediment and rock the eddy currents normally dissipate within a few milliseconds. The eddy currents dissipate much more slowly when buried metallic objects are present. This measurement process occurs as fast as 16 times per second.

The cart-mounted EM61, which operated continuously, was systematically pulled on the instrument trailer by the ATV across the site to cover the areas of concern. EM data were collected with sufficient spatial sampling to detect buried metal objects of potential environmental concern. Table 2 summarizes the recording parameters that were used for the investigation.

After the field work was completed the EM61 data were processed using the DAT61MK2 software package (Geonics, Ltd.) and a PC workstation. The geo-referenced data were then interpolated into a regular grid and plotted using the Surfer surface mapping software program (Golden Software, Denver, CO).

#### 2.2 EM31 GROUND CONDUCTIVITY SURVEY

An electromagnetic (EM) conductivity survey was used to map the electrical properties of the near subsurface sediments at the site. Clayey materials, saturated sediments and weathered bedrock are generally electrically conductive, while sandy, dry materials and unaltered bedrock are generally more resistive. Areas on the site that contain reworked sediments, which may be indicative of burial pits or fill areas, would be expected to produce ground conductivity anomalies.

## Draft Report

Method	Instrument	Specifications
EM Metal Detection	Geonics EM61	High Power Mark2, Dual Coil
EM Ground Conductivity mapping	Geonics EM31	Mark2, Digital Output
Surveying	Trimble GPS	Model Ag-114 Differential (OmniStar enabled

#### TABLE 1: METHODOLOGY & DATA ACQUISITION EQUIPMENT

#### **TABLE 2: DATA ACQUISTION PARAMETERS**

Parameter	Value			
EM61 Power Mode	Low			
Coil Type	1.0 x 0.5 meter			
EM61 Operation Mode	Differential: 4 time windows			
Sampling Interval	10 samples/sec			
No. of Samples	Parcel 3: 29,727 Parcel 10: 49,366			
Approximate Survey Size	Parcel 3: 201,500 sq feet (4.6 acres) Parcel 10: 353,000 sq feet (8.1 acres)			

#### TABLE 3: GROUND CONDUCTIVITY DATA COLLECTION PARAMETERS

Parameter	Value Vertical			
Dipole Orientation				
Sampling Interval	10 samples/sec			
No. of Samples	Parcel 3: 15,791 Parcel 10: 31,758			
Approximate Survey Size	Parcel 3: 189,400 sq feet (4.3 acres) Parcel 10: 292,300 sq feet (6.7 acres)			

The EM31 system measures the change in localized magnetic fields caused by the conductivity of the near surface sediments. The current flow in the sediments is induced by a primary EM field which is generated by a transmitter coil on the EM31 system. A receiver coil on the EM31 then measures the resultant field at a fixed offset from the transmitter. The amplitude and phase shift of the measured EM field is directly related to the bulk conductivity of the sediments below the EM31 instrument. Figure 4 shows an illustration of the theory of operation of the EM31 ground conductivity meter.

The cart-mounted EM31, which operated continuously, was systematically pulled on the instrument trailer by the ATV across the site to cover the areas of concern. EM data were collected with a 10 Hz sampling frequency (10 samples/second). Table 3 summarizes the recording parameters that were used for the investigation.

After the field work was completed the EM31 data were processed using the DAT31W software package (Geonics, Ltd.) and a PC workstation. The geo-referenced data were then interpolated into a regular grid and plotted using the Surfer surface mapping software program.

#### 3. **RESULTS**

#### 3.1 EM61 METAL DETECTION SURVEY

Figures 5-6 show the data coverage maps that display the actual sampling locations where EM61 data were collected in Parcels 3 and 10 during the investigation. The data gap that occurred in the Parcel 3 survey area was the result of an abrupt topography change (small sediment berm) that was inaccessible with the ATV-towed system. All of the EM data were reviewed for quality control both in the field and then in the office.

Figures 7 - 8 show the annotated EM61 anomaly maps for the survey areas. These plots are contour maps of the EM response (measured in millivolts) at various DGPS positions after the data were interpolated into an evenly-spaced grid. Large EM responses (anomalies) occur over very shallow or large buried metallic objects, and are colored green, yellow, and red. A careful review of the EM data suggests that the quality is excellent. The locations of some significant surface features are identified on the maps in Figures 7 - 8. Table 4 lists the surface features shown on the maps. Site features were located with the DGPS and a handheld field GIS system after the EM data collection was completed.

Significant occurrences of metal are apparent in the western portion of Parcel 3, west of the sediment berm, and in the center of the Parcel 10 study area. Note the EM response from the railroad tracks and the water pipe connecting the fire hydrants in Parcel 3 (Figure 7).

The site plan shown in Figures 5 - 8 was provided by TRC. The geophysical anomaly maps were created from DGPS data, but 3Dg cannot verify the accuracy of the site plan. Therefore,

3Dg makes no claims regarding the relationship of the features on the site plan to the geophysical anomalies.

Parcel	Label	Note
3	1	boring/test pit location
	2	boring/test pit location
	3	boring/test pit location
ļ	4	concrete slab / debris
	5	concrete slab / debris
	6	concrete slab / debris
	. 7	boring/test pit location
	8	hydrant
	9	barrier pole
	10	hydrant
	11	power pole
	12	hydrant
	13	power pole
10	1	rock outcrop
	2	center of 8/17/04 excavation
1	3	rock pile

#### TABLE 4: SITE SURFACE FEATURES

#### 3.2 EM31 GROUND CONDUCTIVITY SURVEY

Figures 9 - 10 show the data coverage maps that display the actual sampling locations where EM31 data were collected in Parcels 3 and 10 during the investigation. Note the data gap as the result of the sediment berm in Parcel 3.

**Figures 11 - 12** show the annotated EM31 ground conductivity maps for the survey areas. Important surface features (Table 4) are labeled on the figures. The data plots are color-coded contour maps of the ground conductivity across the survey area. Ground conductivity is measured in millisiemens/meter (mS/m). The color scale for each of the ground conductivity

maps has been optimized to isolate conductivity anomalies. In general, high conductivity (low resistance) areas are shaded red, orange, and yellow, while low conductivity (high resistance) areas are shaded green, blue, and purple. The EM31 system measures bulk conductivity of the earth from the ground surface to the maximum depth of penetration. Ground conductivity measurements are primarily influenced by soil/sediment type, proximity of bedrock to the ground surface, and moisture content.

No significant conductivities anomalies appear in the Parcel 3 map (Figure 11), with the exception of the response from the railroad tracks and the water pipe connecting the fire hydrants. High conductivity anomalies are apparent in the central and southeastern portions of the Parcel 10 study area, and are outlined in black in Figure 12.

The site plan shown in Figures 9 - 12 was provided by TRC. The geophysical anomaly maps were created from DGPS data, but 3Dg cannot verify the accuracy of the site plan. Therefore, 3Dg makes no claims regarding the relationship of the features on the site plan to the geophysical anomalies.

#### 4. CONCLUSIONS

The EM techniques used for the work successfully met the objectives of the project which were to map buried metal objects and variations in the near surface sediments at the site. The following conclusions, which represent one interpretation of the geophysical data, resulted from the work:

- Parcel 3: Many EM61 anomalies are present in the western portion of the study area, adjacent to the sediment berm that bisects the site. The relative size and intensity of the anomalies does not suggest that extremely large metal objects (such as tanks or drums) are buried at the site. Considering the facts that a scrap pile was formerly located within the study area, the EM31 data indicate no significant ground conductivity changes near the EM61 metal detection anomalies, and that many occurrences of small pieces of scrap metal were found in the study area during the investigation suggests that the majority EM anomalies mapped in the survey area probably represent smaller metal objects such as debris that are located on the surface or buried at a shallow depth. The EM61 map clearly delineates the positions of the buried metal and the lateral extent of the buried metal.
- Parcel 10: Many EM61 anomalies are present in the central portion of the study area. The relative size and intensity of the anomalies suggests that some of the anomalies may represent large buried metal objects. The area in which the metal detection anomalies are located correlates with an area of higher ground conductivity as mapped by the EM31 survey. The EM31 data suggest that different sediment types, fill, or reworked soil are located in the areas exhibiting higher ground conductivity. No significant surface metal or debris was noted within the survey area during the investigation. The EM61 map clearly delineates the positions of the buried metal and the lateral extent of the buried metal.

(

(

FIGURES



November 14, 2005

Alta Project I.D.: 26839

Ms. Lisa Brooker Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710

Dear Ms. Brooker,

Enclosed are the results for the two soil samples received at Alta Analytical Laboratory on October 26, 2005 under your Project Name "Ft Bragg-Site Assessment", Project No. 182724. These samples were extracted and analyzed using EPA Method 8290 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Maklio llioie.r

Martha M. Maier Director of HRMS Services



Alia Analytical Laboratory cartifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. This report should not be reproduced except in full without the written approval of ALTA.



Alta Analytical Laboratory Inc. 1104 Windfield Way El Dorado Hills, CA 95762 FAX (916) 673-0106 (916) 933-1640

ALTA

## Section I: Sample Inventory Report Date Received: 10/26/2005

Alta Lab. D	Client Sample ID
26839-001	AS7.1
26839-002	AS7.2



.

## SECTION II

		· de a menuite · · a a c'her a		NAME AND A DAMA	an a san an a	and the constant of the second second	······································	المتحدث والمحدث		over 6 States in the ball states
Method Blanl	K								EPA Meth	od 8290
Matrix:	Soil		QC Batch No.:	- 7	397	Lab Sample:	0-MB001			
Sample Size:	10 g		Date Extracted:	0	-Nov-05	Date Analyzed DH	3-5: 10-Nov-05	Doto An	alyzed DB-225:	λTλ
Sample Bize.	10 g		Date Extracted.		-1107-05	Date Analyzeu Di	5-3. IO-100V-05	Date All	aiyzeu DB-225:	NA.
Analyte	Conc.	(pg/g)	DL ^a	EMPC ^b	Qualifiers	Labeled St	andard	%R	LCL-UCL ^d Q	ualifiers
2378-ICDD		ND	0.0727			IS: 43C-23.7.8	TCDD	78.6	140-185	
1,2,3,7,8-PeCD	D	ND	0.0944			13C-1,2,3,7	,8-PeCDD	83.0	40 - 135	
123478-Hx(	DDAM	ND	0.127			130e1,2,3,4	7.8-HxCDD	80.2.	40 - 135	
1,2,3,6,7,8-HxC	CDD	ND	0.130	TANKALA DEPERTURN	n open versieren erstenen af vors vars	13C-1,2,3,6	,7,8-HxCDD	77.9	40 - 135	nersen als ofer teneticities for
123789Hx0	<b>PD P</b>	ND	1.410,129			<b>36-13C-1,2,3,4</b>	6,7,8-HpCDD	85.5	40,-135 🖈	
1,2,3,4,6,7,8-H	pCDD		0.258			13C-OCDE	・ あいかかんないかどう、たいため面積の特徴を行ったが	75.2	40 - 135	General States
OCDD		ND ND	in the state of the second state of the second states and the second states and the second states and the second states are second states and the second states are second states and the second states are second stat	0.776	·关心: 127.512	\$4.5 <b>13C-23</b> 7/8		75.5	40-03540	
2,3,7,8-TCDF		ND	0.0780			13C-1,2,3,7	IN THE REPORT OF A DESCRIPTION OF A DESC	82.0	40 - 135	
1.2.3.7.8 PèCD		ND ND	0.164			31 130-234	ويرجع ويبارك بالمجار ويعار ومعارية والمعارية والمنابع والمحارك فالمتكر والمتكر والمتكر والمحاولات	80.6	40 <b>-</b> 135 40 - 135	
2,3,4,7,8-PeCD	No. of the second s		0.144 0.0474			目前通知時になどが必要が必要がないという。 (1997年4月27日)	,7,8-HxCDF 7.8-HxCDF	76.5 84 <i>3</i>	40 - 135 3 m - 40 - 135 M	
1,2,3,6,7,8-HxC		ND	0.0432				5,7,8-HxCDF	82.6	40 - 135	
23,467,8-HX	TALK A CONTRACTOR OF A CONTRACT OF A CONTRAC	ND ND	0.0503			Land Series and the series of	8-9-HxCDF	97.4	40-435	
1,2,3,7,8,9-Hx(		ND	0.0378			Contraction of the second s	4,6,7,8-HpCDF	86.9	40 - 135	
1234678-11	こう 日本市 かんしょう にんちょう	ND	0 108 1				17.89-HpCDE		- 40 - 195	
1,2,3,4,7,8,9-H	and a state of the	ND	0.0755		ananan karten baten baten den berek atarin berek atari	13C-OCDE	1 1 1	77.0	40 - 135	
OCDE		ND-	0.208			CRS 37CI-2.3.7	8-TCDD:	., ., ., ., ., ., ., ., ., ., ., ., ., .	40-135	
Totals			· · · · · · · · · · · · · · · · · · ·			Toxic Equivalen	t Quotient (TEQ) I	Data ^e		
Total TCDD		ND	0.0727		eterizionette NPE i sub al sub accidante	TEQ (Min):				
Total PcCDD		ND	0.0944							
Total HxCDD	and wath the state of the second	ND	0.129	网络西部城市中学生发展	网络超过地理问题的礼录出的历史了。15-04-0	a. Sample specific esti				neren sunta
Total HpCDD		ND	9.258			an an and a statement of the second statement of the second	n possible concentration.			
Total TCDF		ND	0.0780			c. Method detection li	LEADERS IN THE PROPERTY OF THE PROPERTY OF THE			
Total PeCDE		ND	0153			bei ernen bei ernen son an	-upper control timit -			
Total HxCDF		ND	0.0510			e. Toxic Equivalent Q	uotient (TEQ) based on I	nternational To	xic Equivalent Factors	(iTEF).
Total HpCDF										

Approved By: Martha M. Maier 14-Nov-2005 07:05

Project 26839

ALTA

)
ALTA

OPR Results						EPAN	lethod 8290
Matrix: Soil	QC Ba	ttch No.:	7397	Lab Sample:	0-OPR001		
Sample Size: 10 g	Date E	lxtracted:	8-Nov-05	Date Analyzed DB-5:	10-Nov-05	Date Analyzed	DB-225: NA
Analyte	Spike Conc. Conc.	. (ng/mL)	OPR Limits	Labeled Standard	-	%R	LCL-UCL
23781CDD	10.0	0.6	7 B.	<u>IS</u> I3C-2,3,7,8-TCDI		72.8	40-135
1,2,3,7,8-PeCDD	50.0 5	3.8	35 - 65	13C-1,2,3,7,8-PeC	DD	80.8	40 - 135
1,2,3,47,8-HxCDD	50.0 mainten 5	45	35-65		xCDD	80.3 min	40-135
1,2,3,6,7,8-HxCDD	50.0 5	3.8	35 - 65	13C-1,2,3,6,7,8-H	xCDD	81.2	40 - 135
1.2.3.78,9HxCDD	50.0	6.4	35-65	44 A3C1123A678	HpCDD	82.3	40 - 135
1,2,3,4,6,7,8-HpCDD	50.0 5	i4.9	35 - 65	13C-OCDD	,	73.1	40 - 135
OCDD	100	11	《注着我们的图》	13C-23778-TGDI		68:6	(/40°435
2,3,7,8-TCDF		0.7	-7 - 13	13C-1,2,3,7,8-PeC	DF	· 76.1	40 - 135 -
4E2,377,8-PeCDF	500	61	35-65	13C-23478-Pec	When the second se	74.0	40-135
2,3,4,7,8-PeCDF	50.0 5	56.5	35 - 65	13С-1,2,3,4,7,8-Н	a marte a second statement of the second	79.0	40 - 135
123-478 HXCDF	50.0	20	35 - 65	13C-123678H	The second state of the second se	84.3	40-185
1,2,3,6,7,8-HxCDF	50.0 5	52 <b>.</b> 5	35 - 65	13С-2,3,4,6,7,8-Н	xCDF	85.2	40 - 135
2,3,4/6,7/8-HXCDF		33-2-2-3	35-65	o.13C=1.213,7,89-H		82.1	40 135
1,2,3,7,8,9-HxCDF	50.0	52.6	35 - 65	13C-1,2,3,4,6,7,8-		72.5	40 - 135
1234678-HpCDE			35+65	130-1234789	Carriel Contraction and Article	75.4	- 402-135-12-12-
1,2,3,4,7,8,9-HpCDF	Character and the second s	54.7	35 - 65	13C-OCDF	an hariyan di sin saya 24 ji.	70.9	40 - 135
OCDE		105	70.130	CRS 37CE2378-1CI	n -	726	40=135
							的现象和现在分词,我们还是这些"这些"的问题。 第二章
				· · · · · · · · · · · · · · · · · · ·			,

Approved By: Martha M. Maier 14-Nov-2005 07:05

Project 26839

Sample ID:	AP/design			antriare 11					<b>EPA</b>	Action 8290
<u>Client Data</u>				Sample Data		Laboratory Data				
Name:	Curtis & To	ompkins, Ltd.		Matrix:	Soil	Lab Sample:	26839-001	Date Re	ceived:	26-Oct-05
Project: Date Collected:	24-Oct-05			Sample Size:	14.2 g	QC Batch No.:	7397	•	stracted:	8-Nov-05
Time Collected:	1010			%Solids:	68.6	Date Analyzed DB-5:	10-Nov-05	Dates A	nalyzed DB-225:	11-Nov-05
Analyte	Conc.	(pg/g)	DL ^a	EMPC ^b	Qualifiers	Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-ICDD		124				<b>IS</b> 13C-2,3,7,8-TCD	$\mathbf{\hat{D}}_{1}$ is the second s	61.9	40-135	
1,2,3,7,8-PeCDI		230	restuuri estu huur resta a tuur a Chibu fuera de	an a	and a standard state of a second state of	· 13C-1,2,3,7,8-Pe0	CDD	67.7	40 - 135	a se an
1,2,3,4,7,8-HxC	DD	169				5	EXCED	70 7	40-135	
1,2,3,6,7,8-HxC	DD HERMAN	237	そうない、など、北京のなどであっているがないなどである。	医鼻周炎 网络拉拉拉斯 化二乙烯酸化 网络网络 网络	ner seensterneren aan	13C-1,2,3,6,7,8-H	第二、1月二日の 1月1日の 1月1日 日本 1月1日 2月1日日 1月1日 1月1日 1月1日 1月1日 1月1日 1月1	68.8	40 - 135	anan arang kang arum kananan salah
1,2,3,7,8,9-HxC		222				F) ~~ 13C-1,23,4.677.8	HpCDD	90.9	North Contraction Contractication Contraction Contraction Contraction Contraction Contraction	<b>被教会法的</b> 的。"
1,2,3,4,6,7,8-Hp	CDD	1020	nio teo necessor de la companya de l			13C-OCDD		93.4	Contraction of the Contraction o	
OCDD		3113060				BC-2,3778-TCD		ALL ACCOUNTS IN CALL AND A STOR	×40 - 135-	國南部建設
2,3,7,8-TCDF		982				13C-1,2,3,7,8-Pe	にかった。自然の意識にはなってい	64.0		
1:2,3;7,8 PeCDI 2,3,4,7,8-PeCDI		695				13C 1 2 2 4 7 8 Pet	ALCONO. N. M. TOWNSKY WARMAN AND ADDRESS OF	607 65.7	AND DESCRIPTION OF STREET, STRE	
1,2,3,4,7,8-HXG	CONTRACT OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTI	2020				13C-1,2,3,4,7,8-E		05.7 71.6	STEP IN CONTRACTOR OF THE	
1,2,3,6,7,8-HxC		260	115 BAR (2019) 27 24 24 24		D	13C-2,3,4,6,7,8-E	and a second	71.3	Chr. 4943 After Sensitive Support Arrest Arrest	
234678-HXC	BARBINE AN UNDER MAR	100 309 P				13C-123789-1	and the second	732		
1,2,3,7,8,9-HxC		108		Zarovi II Gon III ang 1, ng sang sa kunang		13C-1,2,3,4,6,7,8	semilar and the distance of the set of the second behavior	68.9	40 - 135	NREED TO COMPANY OF THE OWNER
1.2,3,4,6,7,8-Hp	CDE:	290				13C-1234789	and the second	90.3	40-135	
1,2,3,4,7,8,9-Hp	CDF	92.0				13C-OCDF		84.4	40 - 135	
OCDE						CRS-37C1-2-34/58-11C1	D:	. 63.7	40 - 135	
Totals						Toxic Equivalent Qu	otient (TEQ) D	ata ^e	•	
Total TCDD		3650	of the state of the		. Andre State and the State and the State and	TEQ (Min): 8'	78			
Total ReCDD		- 3760 3	地內北,14%,2%的時間間,2%的 1%的一些1%,2%的2%2%的1%1%。 1%的一些1%,2%2%2%2%3%3%3%							
Total HxCDD		3540		New Balling State		a. Sample specific estimated	A CONTRACTOR OF A CONTRACT OF			
-Total HpCDD		1680				o Estimated trax mum poss	ible concentration.			
Total TCDF		16300			D Carlos	c. Method detection limit.				an be gan a war yn de general yn de general yn de general yn ar yn a Mae'n ar yn a war yn ar yn a Mae'n ar yn ar y
Total PeCDE		6790		的公司的法律的	D D	d Lower control limit upp		e erendense en erendes b		
Total HxCDF		2420	in a star and a star a star and a star and a star and a star a	u (The section of the	D	e. Toxic Equivalent Quotien	it (IEQ) based on in	ternational	Toxic Equivalent	ractors (11Er).
Total HpCDE				的特别是中国最高兴		中国的大学的代表。这些是				

Approved By:

Martha M. Maier 14-Nov-2005 07:05

Project 26839

Page 6 of 13

ALTA

200	کر
	- )
Â	
AĽ	TA.

		The Start Start Stationers and Statistics in the Statistics		ى بەرمەنتىكى بىرىكى بەرمەنتىكى بىرىچى بەرمەنتىكى بىرىچى بىر	A LO SATISTIC OF A WAY AND A	en her her an de state de mandel andere en en de state de	anhouse	A DATA DE LA COLUMNIA	unservier men ein gezenen von Ster ihr interneten im st
Sample ID;	AS7.2								PA Method 8290
Client Data		•·····································		Sample Data		Laboratory Data	······································		·
Name:	Curtis & To	ompkins, Ltd.		Matrix:	Soil	Lab Sample:	26839-002	Date Received:	26-Oct-05
Project:				Sample Size:	15.69 g	QC Batch No.:	7397	Date Extracted:	8-Nov-05
Date Collected: Time Collected:	24-Oct-05 1020		•	%Solids:	63.0	Date Analyzed DB-5:	10-Nov-05	Dates Analyzed DI	-
Analyte		(pg/g)	DL ²	EMPC ^b	Qualifiers	Labeled Stand:		%R LCL-U	JCL ^d Qualifiers
2.3.7.8-TCDD		-146				<b>IS</b> 13C-2,8-7,8-TCI	D-1	69.7 40 - 1	35.00
1,2,3,7,8-PeCDI	D	154				13C-1,2,3,7,8-Pe	CDD	77.6 40 - 1	135
1,2,3,4,7,8-HxG	<b>DD</b>	664				³ IBC-123,47;8-1	HXCDD	72.1 - 401	135
1,2,3,6,7,8-HxC	DD	68.7				13C-1,2,3,6,7,8-J	HxCDD	74.1 40 - 1	135
1,2.3,7.8,9-HxC	DD	69.5				18C-1,2.3,4.6,7,8	HpCDD	84.7, 40-,	135
1,2,3,4,6,7,8-Hp	CDD	195				13C-OCDD		80.2 40 - 1	135
OCDD						13C-2,3,7,8-TQI	j <b>r</b> : e e e e e	68.1 40-	135
2,3,7,8-TCDF		1110				13C-1,2,3,7,8-Pe	CDF	72.6 40 - 1	135
1.2.3.7.8-PeCD	R	5 420 5				13C 23478-Pe	CDP	685 40-	135
2,3,4,7,8-PeCD		533		• •	annungeneration musican a direct berk Backs Hist 4 - F 26	13C-1,2,3,4,7,8-1	HxCDF	71.8 40 - 1	135
123478-HxC	DE	2 mi20 a sue				FIGC 123678-	AXCDF	<u>72.2</u> × 40	1351
1,2,3,6,7,8-HxC		138			D	13C-2,3,4,6,7,8-	HxCDF	73.4 40 - 1	135
2.3.4.6.7.8-HxC	DF	145				13C-12,3,7,8,9-	HXCDF	78.2 40-	135
1,2,3,7,8,9-HxC	DF	46.2				13C-1,2,3,4,6,7,8	8-HpCDF	79.1 40 - 1	135
12346781	OCDE	88.7				13C 123,4.7.8	-HpCDF	78.5 440	135 7
1,2,3,4,7,8,9-H	pCDF	23.9				13C-OCDF	•	74.0 40 -	135
OCDF		24 E				CRS 3701-23-7-8-TC	DD .	69.8 \ 40 -	135
Totals						Toxic Equivalent Q	10tient (TEQ) I	Data ^e	
Total TCDD		2170		an a still allabla baser treasury of a think and a		TEQ (Min): 6	<u>590</u>	and a second state and an and the second	10. CANESS AND AND REPORT AND A CANESS OF AN ADDRESS OF A
Total PeCDD		540 P							
Total HxCDD		938	- -		11 (20 XX) 1 x Margaliga ya wasan manaka marka kata ka	a. Sample specific estimate	d detection limit.	. TETRA MATURE AND AND ADDRESS OF A DOMESTIC ADDRESS AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRES	- 
Total HpCDD		343				b. Estimated maximum pos	sible concentration.		
Total TCDF		16300			D	c. Method detection limit.	-	Distance of Automatic States and Automatic States	an an an bhaile an stair is far an 17 Mart 18, ann an 17 Mart 19.
Total PeCDF		5200			D.	d Lower control limit - up	per control linut		
Total HxCDF		1220			D	e. Toxic Equivalent Quotie	nt (TEQ) based on h	nternational Toxic Equ	ivalent Factors (ITEF).
Total HpCDF.			之间的 法法律部						

٠

Approved By: M

Martha M. Maier 14-Nov-2005 07:05



## APPENDIX

Project 26839

Page 8 of 13



## DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D.	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Е	The reported value exceeds the calibration range of the instrument.
Н	The signal-to-noise ratio is greater than 10:1.
I	Chemical interference
J	The amount detected is below the Lower Calibration Limit of the instrument.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated Detection Limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit concentrations that corresponds to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

ALTA

## **CERTIFICATIONS**

Accrediting Authority	-Cemificate Number	
State of Alaska, DEC	CA413-02	
State of Arizona	AZ0639	
State of Arkansas, DEQ	05-013-0	
State of Arkansas, DOH	Reciprocity through CA	
State of California – NELAP Primary AA	02102CA	
State of Colorado		
State of Connecticut	PH-0182	
State of Florida, DEP	E87777	
Commonwealth of Kentucky	90063	
State of Louisiana, Health and Hospitals	LA050001	
State of Louisiana, DEQ	01977	
State of Maine	CA0413	
State of Michigan	81178087	
State of Mississippi	Reciprocity through CA	
Naval Facilities Engineering Service Center		
State of Nevada	CA413	
State of New Jersey	CA003	
State of New Mexico	Reciprocity through CA	
State of New York, DOH	11411	
State of North Carolina	06700	
State of North Dakota, DOH	R-078	
State of Oklahoma	D9919	
State of Oregon	CA200001-002	
State of Pennsylvania	68-00490	
State of South Carolina	87002001	
State of Tennessee	02996	
State of Texas	TX247-2005A	
U.S. Army Corps of Engineers		
State of Utah	9169330940	
Commonwealth of Virginia	00013	
State of Washington	C1285	
State of Wisconsin	998036160	
State of Wyoming	8TMS-Q	

407 IV 4000 11.04 PAA

12 002/002

26839 0.8°C

Curtis & Tompkins, Ltd. Analytical Laboratories, Since 1878 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 (510) 486-0532

Project Number: 182724 Site: Ft Bragg-Site Assessment

Subcontract Laboratory; Alta Analytical Lab, Inc. 1104 Windfield Way El Dorado Hills, CA 95762 (916) 933-1640 ATTN: Maricel Avelino

Results due:

Report Level: II

Please send report to: Lisa Brooker *** Please report using Sample ID rather than C&T Lab #.

Sample ID	Sampled	Matrix	Analysis	Car Lab #	Commente
AS7.1	10/24 10:10	Soil	8290	182724-003	Dioxins & Furans
A57.2	10/24 10:20	Soil	8290	182724-004	Dioxins & Furans

Notes:	Relinquish	led By:	Recei	lved By:
	Rely a		Dettina	Benedict
CALIFORNIA OVERNIGHT	Date/Pime: 10/25/05	15:02	Date/Time: 10/06/05	1005
C10129090022410			,,	· · · · · · · · · · · · · · · · · · ·
	<b>A</b>	·		

Nignature on this form constitutes a firm Purchase Order for the services requested above. Page 1 of 1

Project 26839

SAMPLE LOG-IN CHECKLIST

Alta Project No.: _	2005-1				•	· ·	
Samples Arrival:	Date/Time		Initials:		Locatio		
	10/24/05	1005	B	B_		WR-2	
Logged In:	Date/Time	118	Initials:	B	Locatio	WR-J n: WR-2	7
Delivered By:		JPS	Cal	DH	L	Hand Delivered	Other
Preservation:	(Ice)	Blue I	ce	Ľ	ory Ice		None
Temp °C 0.	.8°C		Time:	1020			
				· · · · · · · · · · · · · · · · · · ·	<u>es</u>	NO	NA
Adequate Sample	Volume Received?	·		V.			
Holding Time Acce	ptable?						
Shipping Containe		· · · · · · · · · · · · · · · · · · ·		V			
Shipping Custody		<u> </u>					V .
Shipping Documer			<u>.</u>	V	. <u></u>	· · ·	· · · · · ·
	1012900224	10	·				
Sample Container							
Sample Custody S							V ·
	Sample Documen			<u> </u>			· · · · · · · · · · · · · · · · · · ·
Shipping Containe		Alta	Client)	Re	tain	Return	Dispose
	nple Acceptance F	orm completed	1?	V			·
Drinking Water Sar		· · · · · · · · · · · · · · · · · · ·		<b></b>	f		
Acceptable Preser	vation?	···			r • - • • • • • • • • • • • • • • • • • •		· · · ·
Preservation Info				с	00	Sample Container	None.

Comments:

Lab ID: 182724-004 Client ID: AS7.2 Lab ID: 182724-003 Client ID: AS 7.9 V&B AS 7.1

### STANDARD OPERATING PROCEDURE

Attachment 10.B.4

## Chain of Custody Anomaly/Sample Acceptance Form

Client: Curtis & Tompkins, L	.td.	Project Number	26839
Contact: Lisa Brooker		Date Received:	Oct 26 2005
Fax Number: <u>510-4860532</u>		Documented by/date:	10/26/155 400
	receive authorizati	nplete the Client Authorization set on before proceeding with sample	
The following information or i	item is needed to n	roceed with analysis:	· ·
Complete Chain-of-Custody		Preservative	Collector's Name
Test Method Requested		Sample Identification	Sample Type
Analyte List Requested		Sample Collection Date / Time	Sample Location
Analyte List Requested		Sample Conection Date / Time L	
The following anomalies were Temperature outside ±2°C range Temperature outside Sample ID Discrepancy Sample holding time missed Custody seals broken Insufficient Sample Size Sample Container(s) Broken Incorrect Container Type Other	e Samples Affect	Ice present? Yes	No
		<u>.</u>	
		un and a second seco	
	<u></u>		
Client Authorization		<u></u>	
Proceed With Analysis: Y	TES NO	Signature and Date	11/14/25
Client Comments/Instructions	· COC fax	ed 10/20/05	and the second
		A Analytical Laboratory	

El Dorado Hills, CA 96762



		Barium	
Lab #:	186842	Location:	Ft Bragg-Site Assessment
Client:	Acton Mickelson Environmental	Prep:	WET
Project#:	16017.08	Analysis:	EPA 6010B
Analyte:	Barium	Batch#:	113754
Field ID:	AS-7.2A-1	Sampled:	05/16/06
Matrix:	WET Leachate	Received:	05/16/06
Units:	ug/L	Prepared:	05/24/06
Diln Fac:	10.00	Analyzed:	05/24/06

	Type	Lab ID	Result	RL	
ſ	SAMPLE	186842-002	36,000	250	
- E	BLANK	QC341295	ND	250	

( Not Detected RL= Reporting Limit Page 1 of 1

Curtis & Tompkins, Ltd. Analytical Laboratories, Since 1878

		Lead	
Lab #:	186842	Location:	Ft Bragg-Site Assessment
Client:	Acton Mickelson Environmental	Prep:	WET
Project#:	16017.08	Analysis:	EPA 6010B
Analyte:	Lead	Batch#:	113754
Field ID:	AS-7.3-COMP	Sampled:	05/16/06
Matrix:	WET Leachate	Received:	05/16/06
Units:	ug/L	Prepared:	05/24/06
Diln Fac:	10.00	Analyzed:	05/24/06

Type Lab 10	Result	RL	
SAMPLE 186842-008	1,700	150	
BLANK QC341295	ND	150	

(Not Detected RL= Reporting Limit Page 1 of 1

- ⁴ ~ , ~ )



February 16, 2006

Alta Project I.D.: 27272

Ms. Lisa Brooker Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710

Dear Ms. Brooker,

Enclosed are the results for the two soil samples received at Alta Analytical Laboratory on February 09, 2006 under your Project Name "Fort Bragg-Site Assessment". These samples were extracted and analyzed using EPA Method 8290 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Haillo

Martha M. Maier Director of HRMS Services



the dualescal laboration contains that the sequence can an evaluate and the construments of until by  $M_{1}^{2}$  for these apply the two methods the sector should use be equence to categories in the events of a terms of evaluate the sector of the two methods the sector of the two methods of a terms of the two methods of the sector of the two methods of two m



Project 27272

Alta Analytical Laboratory Inc. 1104 Windfield Way El Dorado Hills, CA 95762 FAX (916) 673-0106 (916) 933-1640



Section I: Sample Inventory Report Date Received: 2/9/2006

<u>Alta Lab. ID</u>

Client Sample ID

27272-001

27272-002

DP10.7-5

DP10.9-9.5

.

.



## SECTION II

. .

Project 27272



## APPENDIX

Method Blank			······································			EPA Method 8290
Matrix: Soil	-	QC Batch No.:	7750	Lab Sample: 0-MB001		
Sample Size: 10.0 g		Date Extracted:	13-Feb-06	Date Analyzed DB-5: 15-Feb-06	Date An	alyzed DB-225: NA
Analyte Conc	:. (pg/g)	DL ^a EMPC ^t	) Qualifiers	Labeled Standard	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.0919		<u>IS</u> 13C-2,3,7,8-TCDD	89.3	40 - 135
1,2,3,7,8-PeCDD	ND	0.126		13C-1,2,3,7,8-PeCDD	99.1	40 - 135
1,2,3,4,7,8-HxCDD	ND -	0.103		13C-1,2,3,4,7,8-HxCDD	86.4	40 - 135
1,2,3,6,7,8-HxCDD	ND	0.105		13C-1,2,3,6,7,8-HxCDD	94.3	40 - 135
1,2,3,7,8,9-HxCDD	ND	0.100		13C-1,2,3,4,6,7,8-HpCDD	77.9	40 - 135
1,2,3,4,6,7,8-HpCDD	ND	0.0686		13C-OCDD	52.5	40 - 135
OCDD	ND	0.159		13C-2,3,7,8-TCDF	85.6	40 - 135
2,3,7,8-TCDF	ND	0.102		13C-1,2,3,7,8-PeCDF	104	40 - 135
1,2,3,7,8-PeCDF	ND	0.166		13C-2,3,4,7,8-PeCDF	102	40 - 135
2,3,4,7,8-PeCDF	ND	0.161		13C-1,2,3,4,7,8-HxCDF	96.6	40 - 135
1,2,3,4,7,8-HxCDF	ND	0.0334		13C-1,2,3,6,7,8-HxCDF	95.8	40 - 135
1,2,3,6,7,8-HxCDF	ND	0.0324		13C-2,3,4,6,7,8-HxCDF	92.3	40 - 135
2,3,4,6,7,8-HxCDF	ND	0.0372		13C-1,2,3,7,8,9-HxCDF	92.9	40 - 135
1,2,3,7,8,9-HxCDF	ND	0.0540		13C-1,2,3,4,6,7,8-HpCDF	80.5	40 - 135
1,2,3,4,6,7,8-HpCDF	ND	0.147		13C-1,2,3,4,7,8,9-HpCDF	79.8	40 - 135
1,2,3,4,7,8,9-HpCDF	ND	0.0810		13C-OCDF	59.5	40 - 135
OCDF	ND	0.268		CRS 37CI-2,3,7,8-TCDD	98.2	40 - 135
Totals			·	Toxic Equivalent Quotient (TEQ) D	ata	
Total TCDD	ND	0.0919		TEQ (Min): 0		
Total PeCDD	ND	0.126				
Total HxCDD	ND	0.102		a. Sample specific estimated detection limit.		
Total HpCDD	ND	0.0686		b. Estimated maximum possible concentration.		
Total TCDF	ND	0.102		c. Method detection limit.		
Total PeCDF	ND	0.163		d. Lower control limit - upper control limit.		
Total HxCDF	ND	0.0386		e. Toxic Equivalent Quotient (TEQ) based on In	ternational To	xic Equivalent Factors (ITEF).
Total HpCDF	ND	0.147	,			•

Approved By: N

Martha M. Maier 16-Feb-2006 15:10

Project 27272

Page 4 of 12

OPR Results			· · · · · · · · · · · · · · · · · · ·	EPA	Method 8290	
Matrix: Soil Sample Size: 10.0 g		QC Batch No.: Date Extracted:	7750 13-Feb-06	Lab Sample: 0-OPR001 Date Analyzed DB-5: 14-Feb-06	Date Analyze	d DB-225: NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	10.0	9,83	7 - 13	<u>IS</u> 13C-2,3,7,8-TCDD	90.2	40 - 135
1,2,3,7,8-PeCDD	50.0	52.1	35 - 65	13C-1,2,3,7,8-PeCDD	103	40 - 135
1,2,3,4,7,8-HxCDD	50.0	49.2	35 - 65	13C-1,2,3,4,7,8-HxCDD	89.1	40 - 135
1,2,3,6,7,8-HxCDD	50.0	50.4	35 - 65	13C-1,2,3,6,7,8-HxCDD	96.4	40 - 135
1,2,3,7,8,9-HxCDD	50.0	49.5	35 - 65	13C-1,2,3,4,6,7,8-HpCDD	81.7	40 - 135
1,2,3,4,6,7,8-HpCDD	50.0	50.2	35 - 65	13C-OCDD	55.1	40 - 135
OCDD	100	100	70 - 130	13C-2,3,7,8-TCDF	89.8	40 - 135
2,3,7,8-TCDF	10.0	9.82	7 - 13	13C-1,2,3,7,8-PeCDF	109	40 - 135
1,2,3,7,8-PeCDF	50.0	49.5	35 - 65	13C-2,3,4,7,8-PeCDF	108	40 - 135
2,3,4,7,8-PeCDF	50.0	49.7	35 - 65	13C-1,2,3,4,7,8-HxCDF	101	40 - 135
1,2,3,4,7,8-HxCDF	50.0	49,3	35 - 65	13C-1,2,3,6,7,8-HxCDF	97.2	40 - 135
1,2,3,6,7,8-HxCDF	50.0	50.4	35 - 65	13C-2,3,4,6,7,8-HxCDF	94.0	40 - 135
2,3,4,6,7,8-HxCDF	50.0	50.3	35 - 65	13C-1,2,3,7,8,9-HxCDF	94.8	40 - 135
1,2,3,7,8,9-HxCDF	50.0	49.4	35 - 65	13C-1,2,3,4,6,7,8-HpCDF	87.2	40 - 135
1,2,3,4,6,7,8-HpCDF	.50,0	49.1	35 - 65	13C-1,2,3,4,7,8,9-HpCDF	84.8	40 - 135
1,2,3,4,7,8,9-HpCDF	50.0	49.1	35 - 65	13C-OCDF	63.1	40 - 135
OCDF	100	94.3	70 - 130	<u>CRS</u> 37Cl-2,3,7,8-TCDD	90.9	40 - 135
	••					

Approved By: Martha M. M

Martha M. Maier 16-Feb-2006 15:10

Project 27272

Sample ID:	DP10.7-5								EPA N	fethod 8290
Client Data Name: Project: Date Collected: Time Collected:		ompkins, Ltd. Site Assessment		Sample Data Matrix: Sample Size: %Solids:	Soil 11.7 g 84.1	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5	27272-001 7750 : 15-Feb-06	Date Re Date Ex Date An		9-Feb-06 13-Feb-06 NA
Analyte	Conc.	(pg/g)	DL ^a	EMPC ^b	Qualifiers	Labeled S	tandard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD		ND	0.148			<u>IS</u> 13C-2,3,7,8	-TCDD	97.1	40 - 135	
1,2,3,7,8-PeCD	D	ND	0.155			13C-1,2,3,7	,8-PeCDD	121	40 - 135	
1,2,3,4,7,8-HxC	CDD	ND	0.137				4,7,8-HxCDD	101	40 - 135	
1,2,3,6,7,8-HxC		ND	0.142				5,7,8-HxCDD	106	40 - 135	
1,2,3,7,8,9-HxC	DD	ND	0.135				4,6,7,8-HpCDD	94.6	40 - 135	
1,2,3,4,6,7,8-Hp	CDD	0.301			J	13C-OCDI	)	67.5	40 - 135	
OCDD		3.09			J	13C-2,3,7,8	3-TCDF	91.2	40 - 135	
2,3,7,8-TCDF		ND	0.126			13C-1,2,3,7	7,8-PeCDF	115	40 - 135	
1,2,3,7,8-PeCD	F	ND	0.125			13C-2,3,4,1	7,8-PeCDF	119	40 - 135	
2,3,4,7,8-PeCD	F	ND	0.117			13C-1,2,3,4	4,7 <b>,</b> 8-HxCDF	114	40 - 135	
1,2,3,4,7,8-HxC	CDF	ND	0.0347			13C-1,2,3,0	5,7,8-HxCDF	108	40 - 135	
1,2,3,6,7,8-HxC	CDF	ND	0.0354			13C-2,3,4,0	6,7,8-HxCDF	107	40 - 135	
2,3,4,6,7,8-HxC	CDF	ND	0.0386			13C-1,2,3,	7,8,9 <b>-</b> HxCDF	97.1	40 - 135	
1,2,3,7,8,9-HxC	CDF	ND	0.0588			13C-1,2,3,4	4,6, <b>7,8-</b> HpCDF	91.2	40 - 135	,
1,2,3,4,6,7,8-H	pCDF	ND	0.0507			13C-1,2,3,4	4,7,8,9-HpCDF	96.9	40 - 135	
1,2,3,4,7,8,9-H	pCDF	ND	0.0529	•		13C-OCDI		78.8	40 - 135	
OCDF		ND	0.173			CRS 37C1-2,3,7	,8-TCDD	102	40 - 135	
Totals	· · · · · · · · · · · · · · · · · · ·					Toxic Equivale	ent Quotient (TEQ) I	Data ^e	,	
Total TCDD	······································	ND -	0.148	·····		TEQ (Min):	0.00610	•		······································
Total PeCDD		ND	0.155							
Total HxCDD		ND	0.138			a. Sample specific e	stimated detection limit.			
Total HpCDD		0.512				b. Estimated maxim	um possible concentration.			-
Total TCDF		ND	0.126			c. Method detection	limit.		•	
Total PeCDF		ND	0.121			d. Lower control lin	nit - upper control limit.			
Total HxCDF		ND	0.0408			e. Toxic Equivalent	Quotient (TEQ) based on I	nternational	Toxic Equivalent	Factors (ITEF).
Total HpCDF		ND	0.0517							

Approved By:

Martha M. Maier 16-Feb-2006 15:10

Project 27272

ALTA

Sample ID:	DP10.9-9.5						· · · · · · · · · · · · · · · · · · ·		EPA N	fethod 8290
Client Data Name: Project: Date Collected: Time Collected:	Curtis & Tompkins, Ltd. Fort Bragg-Site Assessment 26-Jan-06 0930		Sample Data Matrix: Sample Size: %Solids:	Soil 11.5 g 84.9	Lab QC I	o <u>ratory Data</u> Sample: Batch No.: Analyzed DB-5:	27272-002 7750 15-Feb-06	Date Re Date Ex Date An		9-Feb-06 13-Feb-06 NA
Analyte	Conc. (pg/g)	DL ^a	EMPC ^b	Qualifiers		Labeled Sta	ndard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.127		· · ·	<u>1S</u>	13C-2,3,7,8-1	TCDD	87.5	40 - 135	
1,2,3,7,8-PeCD	D ND	0.167				13C-1,2,3,7,8	-PeCDD	101	40 - 135	
1,2,3,4,7,8-HxC	CDD ND	0.136				13C-1,2,3,4,7	,8-HxCDD	81.4	40 - 135	
1,2,3,6,7,8-HxC	DD ND	0.152				13C-1,2,3,6,7	,8-HxCDD	83.4	40 - 135	
1,2,3,7,8,9-HxC	DD ND	0.139			ļ	13C-1,2,3,4,6	,7,8-HpCDD	73,9	40 - 135	
1,2,3,4,6,7,8-H	pCDD ND	0.0915			1	13C-OCDD	•	42.9	40 - 135	
OCDD	1.33			J		13C-2,3,7,8-7	ſCDF	98.7	40 - 135	
2,3,7,8-TCDF	ND	0.106				13C-1,2,3,7,8	-PeCDF	116	40 - 135	•
1,2,3,7,8-PeCD	F ND	0.175				13C-2,3,4,7,8	-PeCDF	118	40 - 135	
2,3,4,7,8-PeCD	F ND	0.161				13C-1,2,3,4,7	,8-HxCDF	81.8	40 - 135	
1,2,3,4,7,8-Hx0	CDF ND	0.0392				13C-1,2,3,6,7	,8-HxCDF	85.5	40 - 135	
1,2,3,6,7,8-Hx <b>(</b>	CDF ND	0.0396				13C-2,3,4,6,7	,8-HxCDF	84.6	40 - 135	
2,3,4,6,7,8-Hx0	CDF ND	0.0415	· .			13C-1,2,3,7,8	3,9-HxCDF	89.4	40 - 135	
1,2,3,7,8,9-Hx(	CDF ND	0.0574				13C-1,2,3,4,6	5,7,8-HpCDF	73.0	40 - 135	
1,2,3,4,6,7,8-Н	pCDF ND	0.0519				13C-1,2,3,4,7	7,8,9 <b>-</b> HpCDF	72.5	40 - 135	
1,2,3,4,7,8,9-Н	pCDF ND	0.0575				13C-OCDF		50.3	40 - 135	
OCDF	ND	0.236			CRS	37Cl-2,3,7,8-	TCDD	91.6	40 - 135	
Totals					Toxic Equivalent Quotient (TEQ) Data e					
Total TCDD	ND	0.127			TE	Q (Min):	0.00133			
Total PeCDD	ND	0.167								
Total HxCDD	ND	0.142		-	a, S	imple specific esti	mated detection limit.			
Total HpCDD	ND	0.0915			b. E	stimated maximum	possible concentration.			
Total TCDF	ND	0.106			c. M	ethod detection lir	nit.			
Total PeCDF	ND	0.168			d. L	ower control limit	- upper control limit.			
Total HxCDF	ND	0.0441			e. T	oxic Equivalent Qu	uotient (TEQ) based on In	ternational	Toxic Equivalent	Factors (ITEF).
Total HpCDF	ND	0.0544				-				

Analyst: DMS

Approved By:

Martha M. Maier 16-Feb-2006 15:10

Project 27272

Page 7 of 12
# DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Е	The reported value exceeds the calibration range of the instrument.
Н	The signal-to-noise ratio is greater than 10.1.
I	Chemical interference
J	The amount detected is below the Lower Calibration Limit of the instrument.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated Detection Limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that corresponds to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

# **CERTIFICATIONS**

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

ł

Curtis & Tompkins, Ltd. Analytical Laboratories, Since 1878 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 (510) 486-0532 Project Number: 184796 Site: Ft Bragg-Site Assessment Subcontract Laboratory: Alta Analytical Lab, Inc. 1104 Windfield Way El Dorado Hills, CA 95762 (916) 933-1640 ATTN: Maricel Avelino Results due: Report Level: II

Please send report to: Lisa Brooker *** Please report using Sample ID rather than C&T Lab #.

Sample ID	Sampled	🛛 Matrix	Analysis	C&T Lab # Comment	<b>S</b> ( ) ( ) ( )
DP10.7-5	01/25 13:13	Soil	8290	184564-014	
DP10.9-9.5	01/26 09:30	Soil	8290	184623-008	

Notes: Preived By 1. X . 2 . Da e/Time Time:

ignature on this form constitutes a firm Purchase Order for the services requested above. Page 1 of 1

### SAMPLE LOG-IN CHECKLIST

Alta Project #:	27277						•
Samples Arrival:	Date/Time	, 0741	Initials	BLB	Locati	w R	-9-
Logged In:	Date/Time 2/9/06 1230		1 Initials	nitials: BBB		Location: WR-P	
Delivered By:	FedEx	UPS	Cal	Cal DHL		Hand Nivered	Other
Preservation:	lce	> Bh	ue Ice	· Dry I	ce	Nc	ne
Temp °C 0.(	°C	Time:	)750	·	Therm	ometer ID	: DT-20

		YES	NO	NA			
Adequate Sample Volume Received	?				V.		
Holding Time Acceptable?					V	 	
Shipping Container(s) Intact?			· •				
Shipping Custody Seals Intact?						·	$\sim$
Shipping Documentation Present?							
Airbill Trk # C/O/29000024466							
Sample Container Intact?					$\bigvee$		
Sample Custody Seals Intact?							$\checkmark$
Chain of Custody / Sample Documer	ntation Pr	esent?			V		
COC Anomaly/Sample Acceptance Form completed?						V	
If Chlorinated or Drinking Water Samples, Acceptable Preservation?							
Na ₂ S ₂ O ₃ Preservation Documented? COC				San Conta		No	ne
Shipping Container Alta Client Retain				Ret	urn	Disp	ose
		the second s					

Comments:

1





February 21, 2006

Alta Project I.D.: 27265

Ms. Lisa Brooker Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710

Dear Ms. Brooker,

Enclosed are the results for the three soil samples received at Alta Analytical Laboratory on February 08, 2006 under your Project Name "Ft Bragg-Site Assessment". These samples were extracted and analyzed using EPA Method 8290 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Ila illie

Martha M. Maier Director of HRMS Services



(the Undernal Fiberatory conduct that the report herein meets all the sequencements (which by M1) (Coherchese applicable ust methods This separt should not be separational second and without the strategy messal of 111.).



#### Alta Analytical Laboratory Inc. 1104 Windfield Way El Dorado Hills, CA 95762 FAX (916) 673-0106 (916) 933-1640



Section I: Sample Inventory Report Date Received: 2/8/2006

Alta Lab. ID	Client Sample ID
27265-001	DP8.7-2
27265-002	DP8.9-2.5
27265-003	HSA4.5-16

ALTA

# SECTION II

Project 27265

Method Blank		······································				EPA Method 829
Matrix: Soil		QC Batch No.: 7	750	Lab Sample: 0-MB001		
Sample Size: 10.0 g		Date Extracted: 1	3-Feb-06	Date Analyzed DB-5: 15-Feb-06	Date An	alyzed DB-225: NA
Analyte Con	c. (pg/g)	DL ^a EMPC ^b	Qualifiers	Labeled Standard	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.0919	· · · · · · · · · · · · · · · · · · ·	<u>IS</u> 13C-2,3,7,8-TCDD	89.3	40 - 135
1,2,3,7,8-PeCDD	ND	0.126		13C-1,2,3,7,8-PeCDD	99.1	40 - 135
1,2,3,4,7,8-HxCDD	ND	0.103		13C-1,2,3,4,7,8-HxCDD	86.4	40 - 135
1,2,3,6,7,8-HxCDD	ND	0.105		13C-1,2,3,6,7,8-HxCDD	94.3	40 - 135
1,2,3,7,8,9-HxCDD	ND	0.100		13C-1,2,3,4,6,7,8-HpCDD	77.9	40 - 135
1,2,3,4,6,7,8-HpCDD	ND	0.0686		13C-OCDD	52.5	40 - 135
OCDD	ND	0.159		13C-2,3,7,8-TCDF	85.6	40 - 135
2,3,7,8-TCDF	ND	0.102		13C-1,2,3,7,8-PeCDF	104	40 - 135
1,2,3,7,8-PeCDF	ND	0.166		13C-2,3,4,7,8-PeCDF	102	40 - 135
2,3,4,7,8-PeCDF	ND	0.161		13C-1,2,3,4,7,8-HxCDF	96.6	40 - 135
1,2,3,4,7,8-HxCDF	ND	0.0334		13C-1,2,3,6,7,8-HxCDF	95.8	40 - 135
1,2,3,6,7,8-HxCDF	ND	0.0324		13C-2,3,4,6,7,8-HxCDF	92.3	40 - 135
2,3,4,6,7,8-HxCDF	ND	0.0372		13C-1,2,3,7,8,9-HxCDF	92. <del>9</del>	40 - 135
1,2,3,7,8,9-HxCDF	ND	0.0540		13C-1,2,3,4,6,7,8-HpCDF	80.5	40 - 135
1,2,3,4,6,7,8-HpCDF	ND	0.147		13C-1,2,3,4,7,8,9-HpCDF	79.8	40 - 135
1,2,3,4,7,8,9-HpCDF	ND	0.0810		13C-OCDF	59.5	40 - 135
OCDF	ND	0.268		<u>CRS</u> 37Cl-2,3,7,8-TCDD	98.2	40 - 135
Totals				Toxic Equivalent Quotient (TEQ) I	Data ^e	· · · · · · · · · · · · · · · · · · ·
Total TCDD	ND	0.0919	· · · · · · · · · · · · · · · · · · ·	TEQ (Min): 0		· · · · · · · · · · · · · · · · · · ·
Total PeCDD	ND	0.126				
Total HxCDD	ND	0.102		a. Sample specific estimated detection limit.		
Total HpCDD	ND	- 0.0686		b. Estimated maximum possible concentration.		
Total TCDF	ND	0.102		c. Method detection limit.		
Total PeCDF	ND	0.163		d. Lower control limit - upper control limit.		
Total HxCDF	ND	0.0386		e. Toxic Equivalent Quotient (TEQ) based on 1	nternational To:	xic Equivalent Factors (ITEF).
Total HpCDF	ND	0.147				

Analyst: DMS

Approved By: N

Martha M. Maier 18-Feb-2006 12:45

Project 27265

Page 4 of 13

Page 5 of 13

OPR Results		· .			EPA	Method 8290
Matrix: Soil		QC Batch No.:	7750	Lab Sample: 0-OPR001		
Sample Size: 10.0 g	·	Date Extracted:	13-Feb-06	Date Analyzed DB-5: 14-Feb-06	Date Analyze	d DB-225: NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	10.0	9.83	7 - 13	18 13C-2,3,7,8-TCDD	90.2	40 - 135
1,2,3,7,8-PeCDD	50.0	52.1	35 - 65	13C-1,2,3,7,8-PeCDD	103	40 - 135
1,2,3,4,7,8-HxCDD	50.0	49.2	35 - 65	13C-1,2,3,4,7,8-HxCDD	89.1	40 - 135
1,2,3,6,7,8-HxCDD	50.0	50.4	35 - 65	13C-1,2,3,6,7,8-HxCDD	96.4	40 - 135
1,2,3,7,8,9-HxCDD	50.0	49.5	35 - 65	13C-1,2,3,4,6,7,8-HpCDD	81.7	40 - 135
1,2,3,4,6,7,8-HpCDD	50.0	50.2	35 - 65	13C-OCDD	55.1	40 - 135
OCDD	100	100	70 - 130	13C-2,3,7,8-TCDF	89.8	40 - 135
2,3,7,8-TCDF	10.0	9.82	7 - 13	13C-1,2,3,7,8-PeCDF	109	40 - 135
1,2,3,7,8-PeCDF	50.0	49.5	35 - 65	13C-2,3,4,7,8-PeCDF	108	40 - 135
2,3,4,7,8-PeCDF	50.0	49.7	35 - 65	13C-1,2,3,4,7,8-HxCDF	101	40 - 135
1,2,3,4,7,8-HxCDF	50.0	49.3	35 - 65	13C-1,2,3,6,7,8-HxCDF	97.2	40 - 135
1,2,3,6,7,8-HxCDF	50.0	50.4	35 - 65	13C-2,3,4,6,7,8-HxCDF	94.0	40 - 135
2,3,4,6,7,8-HxCDF	50.0	50.3	35 - 65	13C-1,2,3,7,8,9-HxCDF	94.8	40 - 135
1,2,3,7,8,9-HxCDF	50.0	49.4	35 - 65	13C-1,2,3,4,6,7,8-HpCDF	87.2	40 - 135
1,2,3,4,6,7,8-HpCDF	50.0	49.1	35 - 65	13C-1,2,3,4,7,8,9-HpCDF	84.8 .	40 - 135
1,2,3,4,7,8,9-HpCDF	50.0	49.1	35 - 65	13C-OCDF	63.1	40 - 135
OCDF	100	94.3	70 - 130	CRS 37Cl-2,3,7,8-TCDD	90.9	40 - 135

Analyst: DMS

Approved By: Martha N

Martha M. Maier 18-Feb-2006 12:45

Project 27265

Sample ID:	DP8.7-2			\$	· · · · · · · · · · · · · · · · · · ·		EPA N	Iethod 8290
Client Data Name: Project: Date Collected: Time Collected:	Curtis & Tompkins, Ft Bragg-Site Assess 24-Jan-06 1034		Sample Data Matrix: Sample Size: %Solíds:	Soil 12.5 g 82.8	Laboratory DataLab Sample:27265-001QC Batch No.:7750Date Analyzed DB-5:15-Feb-06	Date Rec Date Extr Date Ana		8-Feb-06 13-Feb-06 NA
Analyte	Conc. (pg/g)	DL ^a	EMPC ^b	Qualifiers	Labeled Standard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.131	·····		IS 13C-2,3,7,8-TCDD	89.4	40 - 135	
1,2,3,7,8-PeCD	D ND	0.134			13C-1,2,3,7,8-PeCDD	108	40 - 135	
1,2,3,4,7,8-Hx(	CDD ND	0.103			13C-1,2,3,4,7,8-HxCDD	98.6	40 - 135	
1,2,3,6,7,8-Hx0	CDD 0.23	8		J	13C-1,2,3,6,7,8-HxCDD	108	40 - 135	
1,2,3,7,8,9-Hx0	CDD ND	0.155			13C-1,2,3,4,6,7,8-HpCDD	85.8	40 - 135	1
1,2,3,4,6,7,8-H	pCDD 1.86	•		J	13C-OCDD	57.0	40 - 135	
OCDD	8.54	• •			13C-2,3,7,8-TCDF	86.7	40 - 135	
2,3,7,8-TCDF	. ND	0.143			13C-1,2,3,7,8-PeCDF	106	40 - 135	
1,2,3,7,8-PeCD	DF ND	0.165			13C-2,3,4,7,8-PeCDF	110	40 - 135	
2,3,4,7,8-PeCE	OF ND	0.148			13C-1,2,3,4,7,8-HxCDF	114	40 - 135	
1,2,3,4,7,8-Hx	CDF ND	0.0520			13C-1,2,3,6,7,8-HxCDF	113	40 - 135	
1,2,3,6,7,8-Hx	CDF ND	0.0517			13C-2,3,4,6,7,8-HxCDF	106	40 - 135	
2,3,4,6,7,8-Hx	CDF ND	0.0565			13C-1,2,3,7,8,9-HxCDF	93.2	40 - 135	
1,2,3,7,8,9-Hx	CDF 0.48	34		J	13C-1,2,3,4,6,7,8-HpCDF	. 87.3	40 - 135	
1,2,3,4,6,7,8-Н	pCDF ND		0.214		13C-1,2,3,4,7,8,9-HpCDF	94.1	40 - 135	
1,2,3,4,7,8,9-H	ipCDF ND	0.0712			13C-OCDF	68.0	40 - 135	
OCDF	ND	0.272			CRS 37CI-2,3,7,8-TCDD	97.7	40 - 135	
Totals					Toxic Equivalent Quotient (TEQ)	Data ^e		
Total TCDD	ND	0.131	· · · · · · · · · · · · · · · · · · ·		TEQ (Min): 0.0993			<u></u>
Total PeCDD	ND	0.134						
Total HxCDD	0.72	24	1.24		a. Sample specific estimated detection limit.			
Total HpCDD	2.60	<b>)</b>			b. Estimated maximum possible concentration	•		
Total TCDF	1.61	1			c. Method detection limit.			
Total PeCDF	ND	0.154			d. Lower control limit - upper control limit.			
Total HxCDF	0.4	84			e. Toxic Equivalent Quotient (TEQ) based on	International ]	Foxic Equivalent	Factors (ITEF).
Total HpCDF	ND		0.214					

Analyst: DMS

Approved By: Martha M. Maier 18-Feb-2006 12:45

Project 27265

Page 6 of 13

ALTA

Sample ID:	DP8.9-2.5		,,, <u>,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· · · · · · · · · · · · · · · · · · ·			<u></u>		EPA N	lethod 8290
Client Data Name: Project: Date Collected: Time Collected:	Curtis & Tomp Ft Bragg-Site A 24-Jan-06 1131			Sample Data Matrix: Sample Size: %Solids:	Soil 13.4 g 74.8	Lab QC 1	pratory Data Sample: Batch No.: Analyzed DB-5:	27265-002 7750 15-Feb-06	Date Rec Date Ext Date Ana		8-Feb-06 13-Feb-06 NA
Analyte	Conc. (p	g/g)	DL ^a	EMPC ^b	Qualifiers		Labeled Stan	ıdard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD		ND	0.153			IS	13C-2,3,7,8-T	CDD	91.5	40 - 135	
1,2,3,7,8-PeCD	D	0.318			J	]	13C-1,2,3,7,8-	PeCDD	111	40 - 135	
1,2,3,4,7,8-HxC	DD	0.323			J .		13C-1,2,3,4,7,	8-HxCDD	94.8	40 - 135	
1,2,3,6,7,8-HxC	DÓ	3.45					13C-1,2,3,6,7,	8-HxCDD	102	40 135	
1,2,3,7,8,9-HxC	CDD	1.42			J		13C-1,2,3,4,6,	7,8-HpCDD	87.5	40 - 135	
1,2,3,4,6,7,8-Hp	DCDD	54.6				İ.	13C-OCDD		57.0	40 - 135	
OCDD		426	•		×		13C-2,3,7,8-T	CDF	95.9	40 - 135	
2,3,7,8-TCDF		0.476			J.		13C-1,2,3,7,8-	PeCDF	113	40 - 135	
1,2,3,7,8-PeCD	F	0,235			J		13C-2,3,4,7,8-	PeCDF	116	40 - 135	
2,3,4,7,8-PeCD	F	0,489			J		13C-1,2,3,4,7,	8-HxCDF	102	40 - 135	
1,2,3,4,7,8-HxC	CDF	0.782			J		13C-1,2,3,6,7,	8-HxCDF	96.9	40 - 135	
1,2,3,6,7,8-HxC	DF	0.460			J		13C-2,3,4,6,7,	8-HxCDF	96.8	40 - 135	
2,3,4,6,7,8-HxC	ZDF	0.608			J	1	13C-1,2,3,7,8,	9-HxCDF	96.8	40 - 135	
1,2,3,7,8,9-HxC	CDF	ND	0.351				13C-1,2,3,4,6,	7,8-HpCDF	82.8	40 - 135	
1,2,3,4,6,7,8-H	pCDF	25,1					13C-1,2,3,4,7,	8,9-HpCDF	92.9	40 - 135	
1,2,3,4,7,8,9-H	pCDF	ND		1.01			13C-OCDF		65.9	40 - 135	
OCDF		66.5				CR	37Cl-2,3,7,8-1	rcdd	97.9	40 - 135	
Totals						To	xic Equivalent	Quotient (TEQ) I	Data ^e		
Total TCDD		0.794				TE	Q (Min):	2.46		······································	
Total PeCDD		1.19		1.59			-				
Total HxCDD		15.9				a. S	ample specific estim	ated detection limit.			
Total HpCDD		101				b. E	stimated maximum	possible concentration.			
Total TCDF		5.00				c. N	fethod detection lim	it.			
Total PeCDF		3.71		3,96		d. 1	ower control limit -	upper control limit.			• .
Total HxCDF		8.83				c. T	oxic Equivalent Que	otient (TEQ) based on I	nternational	Foxic Equivalent	Factors (ITEF).
Total HpCDF		82.9		83.9							

Analyst: DMS

Approved By: Martha M.

Martha M. Maier 18-Feb-2006 12:45

Project 27265

Page 7 of 13

AĽTA

Sample ID: H	SA4.5-16							EPA I	Method 8290
Project: I Date Collected: 2	Curtis & Tompkins, Ltd. Ft Bragg-Site Assessment 24-Jan-06 1102		Sample Data Matrix: Sample Size: %Solids:	Soil 11.6 g 85.6	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	27265-003 7750 15-Feb-06	Date Re Date Ex Date An	tracted: alyzed DB-225:	8-Feb-06 13-Feb-06 NA
Analyte	Conc. (pg/g)	DL ^a	EMPC ^b	Qualifiers	Labeled Sta	ndard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.120			IS 13C-2,3,7,8-T	CDD	96.9	40 - 135	
1,2,3,7,8-PcCDD	ND	0.143			13C-1,2,3,7,8	-PeCDD	115	40 - 135	
1,2,3,4,7,8-HxCDI	D ND	0.126			13C-1,2,3,4,7	,8-HxCDD	101	40 - 135	
1,2,3,6,7,8-HxCDI	D ND	0.133			13C-1,2,3,6,7	,8-HxCDD	106	40 - 135	
1,2,3,7,8,9-HxCDI	D ND	0.125			13C-1,2,3,4,6	,7,8-HpCDD	92,7	40 - 135	
1,2,3,4,6,7,8-HpC	DD 1.88			J	13C-OCDD		65.1	40 - 135	
OCDD	13.2			<u>.</u>	13C-2,3,7,8-1	CDF	96.9	40 - 135	
2,3,7,8-TCDF	ND	0.106			13C-1,2,3,7,8	-PeCDF	119	40 - 135	
1,2,3,7,8-PeCDF	ND	0.124			13C-2,3,4,7,8	-PeCDF	119	40 - 135	
2,3,4,7,8-PeCDF	ND	0.109			13C-1,2,3,4,7	,8-HxCDF	107	40 - 135	
1,2,3,4,7,8-HxCD	F ND	0.0292			13C-1,2,3,6,7	,8-HxCDF	105	40 - 135	
1,2,3,6,7,8-HxCD	F ND	0.0278			13C-2,3,4,6,7	,8-HxCDF	106	40 - 135	
2,3,4,6,7,8-HxCD	F ND	0.0311			13C-1,2,3,7,8	,9-HxCDF	102	40 - 135	
1,2,3,7,8,9-HxCD	F ND	0.0482			13C-1,2,3,4,6	,7,8-HpCDF	89.8	40 - 135	
1,2,3,4,6,7,8-HpC	DF ND		0.195		13C-1,2,3,4,7	,8,9-HpCDF	97.3	40 - 135	
1,2,3,4,7,8,9-HpC	DF ND	0.0502			13C-OCDF		75.4	40 - 135	
OCDF	0.289			J	CRS 37C1-2,3,7,8-	TCDD	95.7	40 - 135	
Totals					Toxic Equivalent	Quotient (TEQ) I	Data ^e		
Total TCDD	ND	0.120			TEQ (Min):	0.0323			
Total PeCDD	ND	0.143							
Total HxCDD	0.200	·			a. Sample specific estir	nated detection limit.			
Total HpCDD	3.33				b. Estimated maximum	possible concentration.			
Total TCDF	ND	0.106			c. Method detection lin	nit.			
Total PeCDF	ND	0.117			d. Lower control limit	- upper control limit,			•
Total HxCDF	ND	0.0334			e. Toxic Equivalent Qu	iotient (TEQ) based on l	nternational	Toxic Equivalent	Factors (ITEF).
Total HpCDF	0.235		0.430	,					

Analyst: DMS

Approved By: Mar

Martha M. Maier 18-Feb-2006 12:45

Project 27265

Page 8 of 13

# APPENDIX

.?

Project 27265

# 

### DATA QUALIFIERS & ABBREVIATIONS

.

В	This compound was also detected in the method blank.
D	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
E	The reported value exceeds the calibration range of the instrument.
Н	The signal-to-noise ratio is greater than 10:1.
I	Chemical interference
J .	The amount detected is below the Lower Calibration Limit of the instrument.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated Detection Limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit - concentrations that corresponds to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

# CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

ALTA

Curtis & Tompkins, Ltd. Analytical Laboratories, Since 1878 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 (510) 486-0532 Project Number: 184776 Site: Ft Bragg-Site Assessment Subcontract Laboratory: Alta Analytical Lab, Inc. 1104 Windfield Way El Dorado Hills, CA 95762 (916) 933-1640 ATTN: Maricel Avelino Results due: Report Level: II Please send report to: Lisa Brooker *** Please report using Sample ID rather than C&T Lab #.

Sample ID	Sampled	Matrix	Analysis	C&T Lab # Comments	<u></u>
DP8.7-2	01/24 10:34	Soil	8290	184557-012	
DP8.9-2.5	01/24 11:31	Soil	8290	184557-016	
SA4.5-16	01/24 11:02	Soil	8290	184557-019	

Notes:	Relinquishe	d By Received B	A Contraction of the second
· · · · · · · · · · · · · · · · · · ·	Am heros	Bettina J. Lened	diet
•	Date/Time:	1530 Date/Time: 0930	

( ature on this form constitutes a firm Purchase Order for the services requested above. Page 1 of 1

### SAMPLE LOG-IN CHECKLIST

Alta Project #:	7265				<del></del>		,
Samples Arrival:	Date/Time 2/8/06	0915	Initials:	JB -	Locati (	on: NL-Y	
Logged in:	Date/Time $2/9/06$	0730	Initials:	LB	Location: $WR-\mathcal{F}$		-2
Delivered By:	FedEx	UPS -	Cal	DHL	1	Hand Delivered	
Preservation:	Ice	Blue Ice I		Dry I	Dry Ice None		one
Temp °C ၃.4	100	Time:	125	;	Therm	ometer IC	): DT-20

	YES	NO	NA				
Adequate Sample Volume Received	$\bigvee$						
Holding Time Acceptable?					$\checkmark$		
Shipping Container(s) Intact?					1		
Shipping Custody Seals Intact?						-	V
Shipping Documentation Present?					/		
Airbill Trk # C 10	1290	1000a	14383		/		
Sample Container Intact?			•		$\bigvee$		
Sample Custody Seals Intact?			· · · · · · · · · · · · · · · · · · ·				V
Chain of Custody / Sample Docume	ntation Pr	esent?				1	
COC Anomaly/Sample Acceptance I	Form com	pleted?			<u> </u>		
If Chlorinated or Drinking Water Sam			V				
$Na_2S_2O_3$ Preservation Documented?	∛coc	San Conti		No	ne		
Shipping Container	Alta	Client	Retain	Ret	um	Disp	ose
O							

Comments:

L:/QA/Forus/SampleControl/Sample Login 12/2005 rm Page 13 of 13

.....





March 01, 2006

Alta Project I.D.: 27297

Ms. Lisa Brooker Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710

Dear Ms. Brooker,

Enclosed are the results for the one soil sample received at Alta Analytical Laboratory on February 16, 2006 under your Project Name "Fort Bragg-Site Assessment-184951". This sample was extracted and analyzed using EPA Method 8290 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier HRMS Services Director



(International habitation contains that the report havin mean all the configurements of torth by NEP (Crite theory applicable user methods (The report should not be reproduced everyt in till without the written approval) of (LP).



### Alta Analytical Laboratory Inc. 1104 Windfield Way El Dorado Hills, CA 95762

FAX (916) 673-0106 (916) 933-1640



### Section I: Sample Inventory Report Date Received: 2/16/2006

### <u>Alta Lab. ID</u>

<u>Client Sample ID</u>

### 27297-001

COMPOSITE



# SECTION II

Method Blank		· · · · · · · · · · · · · · · · · · ·				EPA Method 829
Matrix: Soil		QC Batch No.: 7'	774	Lab Sample: 0	-MB001	
Sample Size: 10.0 g		Date Extracted: 2	1-Feb-06	Date Analyzed DB-5: 2	3-Feb-06 Date An	alyzed DB-225: NA
Analyte Co	nc. (pg/g)	DL ^a EMPC ^b	Qualifiers	Labeled Standard	%R	LCL-UCL ^d Qualifier
2,3,7,8-TCDD	ND	0.150		IS 13C-2,3,7,8-TCDD	85.9	40 - 135
1,2,3,7,8-PeCDD	ND	0.144		13C-1,2,3,7,8-PeCI	DD 82.8	40 - 135
1,2,3,4,7,8-HxCDD	ND	0.152	·	13C-1,2,3,4,7,8-Hx	CDD 77.7	40 - 135
1,2,3,6,7,8-HxCDD	ND	0.161		13C-1,2,3,6,7,8-Hx	CDD 88.4	40 - 135
1,2,3,7,8,9-HxCDD	ND	0.151		13C-1,2,3,4,6,7,8-H	IpCDD 73.0	40 - 135
1,2,3,4,6,7,8-HpCDD	ND	0.146		13C-OCDD	.57.5	40 - 135
OCDD	ND	0.251		13C-2,3,7,8-TCDF	85.6	40 - 135
2,3,7,8-TCDF	ND	0.140		13C-1,2,3,7,8-PeCI	OF 87.1	40 - 135
1,2,3,7,8-PeCDF	ND	0.183		13C-2,3,4,7,8-PeCl	DF 86.8	40 - 135
2,3,4,7,8-PeCDF	ND	0.179		13C-1,2,3,4,7,8-Hx	CDF 86.2	40 - 135
1,2,3,4,7,8-HxCDF	ND	0.0499		13C-1,2,3,6,7,8-Hx	CDF 87.2	40 - 135
1,2,3,6,7,8-HxCDF	ND	0.0501		13C-2,3,4,6,7,8-Hx	CDF 83.6	40 - 135
2,3,4,6,7,8-HxCDF	ND	0.0561		13C-1,2,3,7,8,9-Hx	CDF 85.0	40 - 135
1,2,3,7,8,9-HxCDF	ND	0.0840		13C-1,2,3,4,6,7,8-I	HpCDF 75.5	40 - 135
1,2,3,4,6,7,8-HpCDF	ND	0.0647		13C-1,2,3,4,7,8;9-1	IpCDF 78.3	40 - 135
1,2,3,4,7,8,9-HpCDF	ND	0.0719		13C-OCDF	65.4	40 - 135
OCDF	ND	0.374		CRS 37C1-2,3,7,8-TCDI	92.2	40 - 135
Totals				Toxic Equivalent Quotic	ent (TEQ) Data ^c	
Total TCDD	ND	0.150		TEQ (Min): 0		
Total PeCDD	ND	0.144				
Total HxCDD	ND	0.154		a. Sample specific estimated det	ection limit.	
Total HpCDD	ND	0.146		b. Estimated maximum possible	concentration.	
Total TCDF	ND	0.140		c. Method detection limit.		
Total PeCDF	ND	0.181		d. Lower control limit - upper co	ontrol limit.	
Total HxCDF	ND	0.0590		e. Toxic Equivalent Quotient (T	EQ) based on International To	xic Equivalent Factors (ITEF).
Total HpCDF	ND	0.0681			·	

Analyst: DMS

Approved By:

William J. Luksemburg 01-Mar-2006 13:07

Project 27297

Page 4 of 11

Page 5 of 11

OPR Results		·		EPA Method 8290			
Matrix: Soil Sample Size: 10.0 g		QC Batch No.: Date Extracted:	7774 21-Feb-06	Lab Sample:0-OPR001Date Analyzed DB-5:23-Feb-06	Date Analyze	d DB-225: NA	
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	
2,3,7,8-TCDD	10.0	10.1	7 - 13	<u>IS</u> 13C-2,3,7,8-TCDD	86.8	40 - 135	
1,2,3,7,8-PeCDD	50.0	55.4	35 - 65	13C-1,2,3,7,8-PeCDD	84.3	40 - 135	
1,2,3,4,7,8-HxCDD	50.0	51.5	35 - 65	13C-1,2,3,4,7,8-HxCDD	83.9	40 - 135	
1,2,3,6,7,8-HxCDD	50.0	53.8	35 - 65	13C-1,2,3,6,7,8-HxCDD	_ 91.9	40 - 135	
1,2,3,7,8,9-HxCDD	50.0	53.2	35 - 65	13C-1,2,3,4,6,7,8-HpCDD	87.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	50.0	52.3	35 - 65	13C-OCDD	63.9	40 - 135	
OCDD	100	106	70 - 130	13C-2,3,7,8-TCDF	89.8	40 - 135	
2,3,7,8-TCDF	10.0	9.94	7 - 13	13C-1,2,3,7,8-PeCDF	95.0	40 - 135	
1,2,3,7,8-PeCDF	50.0	50.1	35 - 65	13C-2,3,4,7,8-PeCDF	92.7	40 - 135	
2,3,4,7,8-PcCDF	50.0	50.5	35 - 65	13C-1,2,3,4,7,8-HxCDF	91.3	40 - 135	
1,2,3,4,7,8-HxCDF	50.0	51.7	35 - 65	13C-1,2,3,6,7,8-HxCDF	91.7	40 - 135	
1,2,3,6,7,8-HxCDF	50.0	51.3	35 - 65	13C-2,3,4,6,7,8-HxCDF	85.8	40 - 135	
2,3,4,6,7,8-HxCDF	50.0	51.6	35 - 65	13C-1,2,3,7,8,9-HxCDF	85.1	40 - 135	
1,2,3,7,8,9-HxCDF	50.0	49.2	35 - 65	13C-1,2,3,4,6,7,8-HpCDF	76.1	40 - 135	
1,2,3,4,6,7,8-HpCDF	50.0	50.3	35 - 65	13C-1,2,3,4,7,8,9-HpCDF	85.0	40 - 135	
1,2,3,4,7,8,9-HpCDF	50.0	52.7	35 - 65	13C-OCDF	70.6	40 - 135	
OCDF	100	99.4	70 - 130	CRS 37Cl-2,3,7,8-TCDD	87.1	40 - 135	

Analyst: DMS

Approved By: William J. Luksemburg 01-Mar-2006 13:07

Project 27297

Sample ID: **COMPOSITE** EPA Method 8290 Client Data Sample Data Laboratory Data Curtis & Tompkins, Ltd. Name: Matrix: Soil Lab Sample: 27297-001 Date Received: 16-Feb-06 Project: Fort Bragg-Site Assessment-184951 Sample Size: OC Batch No .: Date Extracted: 21-Feb-06 17.1 g 7774 Date Collected; 14-Feb-06 Date Analyzed DB-5: %Solids: 58.3 Dates Analyzed DB-225: 28-Feh-06 Time Collected: 0900 23-Feb-06 DL^a EMPCb LCL-UCL^d Oualifiers Qualifiers %R Analyte Cone. (pg/g)Labeled Standard IS 2.3.7.8-TCDD 83.6 13C-2,3,7,8-TCDD 95.3 40 - 135 1,2,3,7,8-PeCDD 225 13C-1,2,3,7,8-PeCDD 92.5 40 - 135151 93.3 40 - 135 1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 243 40 - 135 1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 97.4 197 90.8 40 - 135 1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 981 13C-OCDD 40 - 135 1,2,3,4,6,7,8-HpCDD 68.2 OCDD 1190 13C-2,3,7,8-TCDF 40 - 135 94.6 494 2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 97.9 40 - 135 290 1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 95.9 40 - 135 2,3,4,7,8-PeCDF 495 13C-1,2,3,4,7,8-HxCDF 99.1 40 - 135 1,2,3,4,7,8-HxCDF 191 13C-1,2,3,6,7,8-HxCDF 93.8 40 - 135 210 94.1 40 - 135 1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 273 2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 96.5 40 - 135 80.2 40 - 135 1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 86.2 271 13C-1,2,3,4,7,8,9-HpCDF 40 - 135 1,2,3,4,6,7,8-HpCDF 86.4 13C-OCDF 1,2,3,4,7,8,9-HpCDF 75.4 76.0 40 - 135 CRS 37C1-2,3,7,8-TCDD 108 OCDF 102 40 - 135 e Toxic Equivalent Quotient (TEO) Data Totals 2760 657 Total TCDD TEQ (Min): 3580 Total PeCDD 3180 Total HxCDD a. Sample specific estimated detection limit. 1830 Total HpCDD b. Estimated maximum possible concentration. 9980 Total TCDF c. Method detection limit, **Total PeCDF** 4700 d. Lower control limit - upper control limit. 2060 Total HxCDF e. Toxic Equivalent Quotient (TEQ) based on International Toxic Equivalent Factors (ITEF). Total HpCDF 617

Analyst: DMS

Approved By: V

William J. Luksemburg 01-Mar-2006 13:07

Project 27297

Page 6 of 11

ATA



### APPENDIX

. .

Project 27297



### DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Е	The reported value exceeds the calibration range of the instrument.
Н	The signal-to-noise ratio is greater than 10:1.
I	Chemical interference
J	The amount detected is below the Lower Calibration Limit of the instrument.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated Detection Limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit - concentrations that corresponds to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

ł

# **CERTIFICATIONS**

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

Curtis & Tompkins, Ltd. Analytical Laboratories, Since 1878 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 (510) 486-0532 Project Number: 184951 Site: Ft Bragg-Site Assessment Subcontract Laboratory: Alta Analytical Lab, Inc. 1104 Windfield Way El Dorado Hills, CA 95762 (916) 933-1640 ATTN: Maricel Avelino

Results due:

### Report Level: II

Please send report to: Lisa Brooker *** Please report using Sample ID rather than C&T Lab #.

ample ID.	Sampled		latrix	Analysis		o # Comment	5
OMPOSITE	02/14 0	9:00 5	oil	8290	184951	-007	
-							
		• .					
				-			
	• .						
						•	
			•				
oles:		/	Relinquis	hed By.	Re	eccived By	
			A'L		Atter of	Binn det	[
		Date/	Time:	21 - 71	Date/Time:	- Jung	
		2/1	72me: 5/06		_i_ <i>q[16/06_</i>	0900	
		·			4.4.4		

Page 1 of 1

## SAMPLE LOG-IN CHECKLIST

Alta Project #:	7297	<u> </u>						
Samples Arrival:	Date/Time	0910	Initials	SSB.	Locat	tion: WR-	S	
Logged In:	Date/Time	° 1110	2 Initials	BSB	Locat	tion: WK	-9-	
Delivered By:	FedEx	UPS -	Cal		D	Hand Delivered		
Preservation:	Ice	Blu	le lce	Ice Dry I		lce None		
Temp °C 0.7°C Time: 09			715		Therr	nometer ID	: DT-20	

							NA
Adequate Sample Volume Received	V	,					
Holding Time Acceptable?			• •		V		
Shipping Container(s) Intact?			-		V		
Shipping Custody Seals Intact?			· · · · · · · · · · · · · · · · · · ·				$\checkmark$
Shipping Documentation Present?		-			. V		
Airbill Trk # C/O	1290	00024	1614		$\checkmark$		
Sample Container Intact?		- ,			/		
Sample Custody Seals Intact?		<del></del>				-	V
Chain of Custody / Sample Documer	ntation Pr	esent?			V		
COC Anomaly/Sample Acceptance I	Form con	pleted?		•			
If Chlorinated or Drinking Water Sam			$\checkmark$				
$Na_2S_2O_3$ Preservation Documented?		COC	Sam Conta	· ·	No	ne	
Shipping Container	Alta	Client	Retain	Reta	HU V	Disp	ose
Commontor							

Comments:

...



### ACTON • MICKELSON • ENVIRONMENTAL, INC.

Consulting Scientists, Engineers, and Geologists

June 7, 2006

Via Overnight Mail

Mr. Brad Bonner Allied Waste Services 1145 W. Charter Way Stockton, California 95206

FILE COPY

16017.08

### Subject: Stockpiled Soil/Fly Ash Georgia-Pacific Wood Products Manufacturing Facility 90 W. Redwood Avenue, Fort Bragg, California

Dear Mr. Bonner:

Enclosed is the completed Generator Waste Profile sheet for the subject material. Please advise when the waste application is finalized, so that we may coordinate transportation. Denbeste Trucking will most likely be the transporter chosen to take the material to Kelly Canyon landfill.

Sincerely,

ACTON • MICKELSON • ENVIRONMENTAL, INC.

Ellev Jrosel

Ellen A. Frosch Controller

Michael A. Acton, R.E.A. Vice President

Enclosures

cc w/enc: Ms. Julie B. Raming, P.G., Georgia-Pacific Corporation

(916) 939-7550 Fax (916) 939-7570



٦, 1

x 3

### **GENERATOR WASTE PROFILE SHEET**

Page 1 of 2

				Waste	e Profile #
Requested Disposal Facility:	Keller Canyon				<u> </u>
	an Allied Waste Company		AWI Sales R	ep:	
I. Generator Information	I. Generator Information		Date: 06/02/	2006	· · · · · · · · · · · · · · · · · · ·
Generator Name: Georgia-Pac	ific Corporation				
Generator Site Address: 90 We	est Redwood Ave				
City: Fort Bragg	County: Mendocino	State:	CA		Zip: 95437
State ID/Reg No:	State Approval/Waste Code:		(if ap	olicable)	SIC Code:
Generator Mailing Address (if c	lifferent): 133 Peachtree Street	NE			· · · · · · · · · · · · · · · · · · ·
City: Atlanta	County: Fulton	State:	GA	•	Zip: 30303
Generator Contact Name: Julie	Raming				
Phone Number: 404-652-6859		Fax N	umber: 404-65	4-4701	
lla. Transporter Informat	ion				· · · ·
Transporter Name:	······································	Conta	ct Name:		
Transporter Address:			· · ·		
City:	County:	State:			Zip:
Phone Number:	Fax Number:	State	Transportation	Numbe	er:
Ilb. Billing Information					
Bill To: Georgia-Pacific Corpora	ation	Conta	ct Name: Julie	Raming	g
Billing Address: 133 Peachtree					
City: Atlanta	State: GA	Zip: 30	0303	Phone I	Number: 404-652-6859
III. Waste Stream Inform	ation			;	
Name of Waste: stockpile soil v	with fly ash	······			
	ash went through a re-injectior	system and	d wet scrubber	proces	s, then the material
	nd was dredged/excavated, and				
······································					
	· · · · · · · · · · · · · · · · · · ·				
Type of Waste	USTRIAL PROCESS WASTE	or 🖂	POLLUTION	CONTR	ROL WASTE
Physical State: X SO		WDER		OTHER	· · ·
Method of Shipment: 🛛 BU			२:		
Estimated Annual Volume:		TONS: <u>3000</u>	GALLON	3	
Frequency: ONE TIME		MONTHLY		:	
Special Handling Instructions:					
IV. Representative Samp	le Certification			NO SAN	IPLE TAKEN
Is the representative sample co	blected to prepare this profile and ceremony of the profile and ceremony of the profile and th			YES or	NO
Sample Date: 10/24/05, 02/14/2006, 05/16/2006	Type of Sample: 🖾 COMPOSITE SAMPLE 🛛 GRAB SAMPLE				
Laboratory: Curtis & Tompkins	aboratory: Curtis & Tompkins LTD Sample ID Numbers: 182724-003, 182724-004, 1 007, 186842		3, 182724-004, 184951-		
Sampler's Employer: Acton Mickelson Environmental, Inc.					
		Signature:	Kennes (	lin	© Allied Waste, February 2001



### **GENERATOR WASTE PROFILE SHEET (continued)**

Page 3 of 2

Allanda Mara					Was	ste Prof	ile #
V. Phys	ical Characteristics of	Waste		L	· · · · ·		
· · · · · · · · · · · · · · · · · · ·	ic Components	<u> </u>		% by '	Weight (ra	nge)	
1. ash				90			
2. soil		9					
3. vegetation		1					
4.							
5.							
Color	Odor (describe)	Free Liquids	% Solids	pH:	Flash P	oint	Phenol
1		VES or NO	(		1		
Black		Content%	100	<12.5		<u>_F</u>	ppm
Attach Lab	oratory Analytical Report (an	d/or Material Safety Da	ta Sheet) Inclu	iding Required Par	rameters I	Provided	l for this Profile
Does this waste or generating process contain regulated concentrations of the following Pesticides and/or Herbicides:							
Chlordane, Endrin, Heptachlor (and it epoxides), Lindane, Methoxychlor, T		Toxaphene, 2,4-D, or 2,4,5-TP Silvex as			ј 🗋 Хе	es or 🔀 No	
defined in 40 CFR 261.33?				10.1.			
Does this waste or generating process cause it to exceed OSHA exposure limits from			imits from high	levels of Hydrogen S	ullide or	🗌 Ye	es or 🔀 No
Hydrogen Cyanide as defined in 40 CFR 261.23? Does this waste contain regulated concentrations of Polychlorinated Biphenyls (PCBs) as defined in 40			lefined in 40 CFR Pa	rt 761?	TYe	s or 🛛 No	
Does this waste contain regulated concentrations of Polychionnated Biptienyis (PCBs) as defined in 40 CFR 261.31, 261.32, 261.33, Does this waste contain regulated concentrations of listed hazardous wastes defined in 40 CFR 261.31, 261.32, 261.33,			1				
including RCRA F-Listed Solvents?				s or 🖾 No			
Does this waste contain regulated concentrations of 2,3,7,8-Tetrachlorodibenzodioxin (2,3,7,8-TCCD), or any other				s or 🖂 No			
	ned in 40 CFR 261.31?				· · · · · ·		
Is this a regulated Toxic Material as defined by Federal and/or State regulations?				es or 🛛 No			
Is this a regulated Radioactive Waste as defined by Federal and/or State regulations?				es or 🛛 No			
Is this a regulated Medical or Infectious Waste as defined by Federal and/or State regulations?				es or 🛛 No			
Is this waste generated at a Federal Superfund Clean Up Site?				es or 🖾 No			

#### VI. **Generator Certification**

I hereby certify that to the best of my knowledge and belief, the information contained herein is a true, complete and accurate description of the waste material being offered for disposal and all known or suspected hazards have been disclosed. All Analytical Results/Material Safety Data Sheets submitted are truthful and complete and are representative of the waste. I further certify that by utilizing this profile, neither myself nor any other employee of the company will deliver for disposal or attempt to deliver for disposal any waste which is classified as toxic waste, hazardous waste or infectious waste, or any other waste material this facility is prohibited from accepting by law. I shall immediately give written notice of any change or condition pertaining to the waste not provided herein. Our company hereby agrees to fully indemnify this disposal facility against any damages resulting from this certification being inaccurate or untrue. I further certify that the company has not altered the form or content of this profile sheet as provided by Allied Waste.

Julie B. Raming, P.G., Manager Environmental Affairs
Authorized Representative Name And Title (Printed)

Georgia-Pacific Corporation

Company Name

06

Authorized Representative Signatu

#### **Allied Waste Decision** 1/81

	DRejected	Expiration:	
Conditions:	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		<u> </u>
	Name, Title	Signature	Date

### Ellen Frosch

From:	Ellen Frosch [efrosch@ameinc.net]		
Sent:	Tuesday, May 30, 2006 9:44 AM		

Sent: Tuesday, May 30, 2006 9:44 AM To: 'brad.bonner@awin.com'

Cc: Julie Raming (jbraming@gapac.com)

Subject: GP Fort Bragg - Stockpiled Soil with Fly Ash

Attachments: Fly Ash Lab Data Summary.pdf; Fly Ash Stockpile Dwg.pdf; Fly Ash Lab Data Report.pdf; 186842_RPTS.pdf

Hello Brad,

Julie Raming of Georgia-Pacific requested I forward this information to you for review and providing a price quote for disposal.

There is approx +/- 3,000 cubic yards of soil with fly ash stockpiled at the site.

Fly ash was generated at the mill site by the burning of wood waste and bark at the Co-generation plant (Powerhouse). Around 1996 a fly ash re-injection system was installed and the dewatering slabs were no longer used. Scrubber water was pumped into Ponds.

The existing stockpile came from dredging/excavation of the Ponds, is uneven in shape and has an approximate dimension of about 27,580 ft2 and contains an estimated volume of 2,960 yd3 of material.

The fly ash went through a re-injection system and wet scrubber process, then the material was sent ponds. The pond was dredged/excavated, and this excavated material is what we are referring to ______s the "fly ash stockpile".

The stockpile with fly ash is not at all like ash from a wood stove or barbecue at all. The material is best described as a black silt (ML). It is cohesive, and as a bulk soil has a blocky texture, and shows cracks when partially dessicated. It also has small flecks, so it has a micaceous appearance.

Presumably the physical properties are a result of the wet scrubber process, and subsequent settlement in a pond.

Attached are laboratory data (summary and detail lab analyses) and a map of the sampling locations.

Ellen A. Frosch Acton Mickelson Environmental, Inc. 5175 Hillsdale Circle #100 El Dorado Hills, CA 95762 916.939.7569 (direct) 916.939.7570 (fax)

This email may contain confidential and privileged material for the sole use of the intended recipient. Any review or distribution by others is strictly prohibited. If you are not

intended recipient, please contact the sender and delete all copies.

### Ellen Frosch

Erom: nt: . o: Subject:

,}

. 1

Brad Bonner [Brad.Bonner@awin.com] Thursday, June 01, 2006 2:50 PM efrosch@ameinc.net RE: GP Fort Bragg - Stockpiled Soil with Fly Ash

Attachments:

Generator Waste Profile Sheet (with Bill To).doc



Generator Waste Profile Sheet ... Ellen

The material looks good...We need a completed profile form with signatures for final approval..Please see attachment...You can fax it back to my Stockton Sales office 209 466 1067....Thanks...Brad

1

Brad Bonner Sales Manager Allied Waste Services - Pacific Region Northern California/Oregon District Business: (800) 204-4242 Fax: (209) 466-1067 Mobile:(209) 601-6555


## Summary of Analytical Results

Beginning Date 9/1/05

Matrix Fly Ash Cinder

.1

End Date 4/1/06

Units mg/kg

All Data Are Preliminary r Maximum

Parameter	Method	Cleanup Method	Number Results		Minimum	Maximum (See Note)	Average
Acenaphihene	EPA 8270C	None	3	0	0.017	0.019	0.018
Acenaphthylene	EPA 8270C	None	3	2	0.014	0.11	0.05867
Anthracene	EPA 8270C	None	3	1	0.015	0.039	0.0245
Antimony	EPA 6010B	None	3	3	0.015	1.5	0.63167
Arsenic	EPA 6010B	None	3	3	0.11	38	19.70333
Barium	EPA 6010B	None	3	3	0.64	2200	1046.88
Benzo(a)anthracene	EPA 8270C	None	3	2	0.0165	0.036	0.0275
Benzo(a)pyrene	EPA 8270C	None	3	0	0.0135	0.0175	0.01533
Benzo(b)fluoranthene	EPA 8270C	None	3	3	0.035	0.059	0.045
Benzo(g,h,i)perylene	EPA 8270C	None	3	0	0.0135	0.0195	0.0165
Benzo(k)fluoranthene	EPA 8270C	None	3	1	0.0135	0.052	0.029
Beryllium	EPA 6010B	None	3	3	0.0048	0.53	0.2916
Cadmium	EPA 6010B	None	3	3	0.018	2.6	1.37267
Chromium	EPA 6010B	None	3	3	0.86	46	26.95333
Chrysene	EPA 8270C	None	3	3	0.059	0.087	0.07033
Cobalt	EPA 6010B	None	3	-3	0.15	13	6.98333
Copper	EPA 6010B	None	3	3	1.1	100	59.03333
Cyanide	EPA 335.2	None	1	0	0.5	0.5	0.5
Dibenz(a,h)anthracene	EPA 8270C	None	3	0	0.013	0.019	0.01667
Fluoranthene	EPA 8270C	None	3	3	0.39	0.55	0,47
Fluorene	EPA 8270C	None	3	0	0.0165	0.0195	0.01767
Indeno(1,2,3-cd)pyrene	EPA 8270C	None	3	0	0.016	0.019	0.01767
Lead	EPA 6010B	None	3	3	1.1	65	38,03333
Mercury	EPA 7471A	None	3	2	0.01	0.17	0.11333
Molybdenum	EPA 6010B	None	3	3	0.011	3.6	1.57033
Naphthalene	EPA 8270C	None	3	3	0.15	0.29	0.20333
Nickel	EPA 6010B	None	3	3	0.82	43	21.60567
Phenanthrene	EPA 8270C	None	3	3	0.39	0.46	0.42333
Pyrene	EPA 8270C	None	3	3	0.29	0.37	0.34333
Selenium	EPA 6010B	None	3	3	0.0057	0.99	0.50523
Silver	EPA 6010B	None	3	0	0.0011	0.135	0.08703
Thallium	EPA 6010B	None	3	2	0.0025	0.58	0.23583
Vanadium	EPA 6010B	None	3	3	0.65	51	28.55
Zinc	EPA 6010B	None	3	3	1.7	460	257.23333

Notes:

Concentrations less than the reporting limit (either the method detection limit or quantitation limit) are assigned a value of onehalf the reporting limit.

Maximum Concentration values may represent results that are less than the reporting limit. Average values are arithmetic means.

· · ·				Concenti	ration (pg/g)		
	TEF						
	(Interntl	0 0 0 0		0.00	(a) 10/0 <i>4/07</i>	c	
Dioxin/Furan Isomer	the second s		.1) 10/24/05		/.2) 10/24/05		ite 2/14/06
2378 TCDD	1	124	124	146	146	83.6	83.6
12378PeCDD	1	230	230	154	154	225	225
123478HxCDD	0.1	159	15.9 •	66.4	6.64	151	15.1
123678HxCDD	0.1	237	23.7	68.7	6.87	243	24.3
123789HxCDD	0.1	222	22.2	69.5	6.95	197	19.7
1234678HpCDD	0.01	1020	10.2	195	1.95	981	9.81
OCDD	0.0001	1060	0.106	233	0.0233	1190	0.119
2378TCDF	0.1	982	98.2	1110	111	494	49,4
12378PeCDF	0.05	494	24.7	420	21	290	14.5
23478PeCDF	0.5 -	695	347.5	533	266.5	495	247.5
123478HxCDF	0.1	230	23	120	12	191	19.1
123678HxCDF	0.1	260	26	138	13.8	210	21
234678HxCDF	0.1	309	30.9	145	14.5	273	27.3
123789HxCDF	0.1	108	10.8	46.2	4.62	80.2	8.02
1234678HpCDF	0.01	290	2.9	88.7	0.887	271	2.71
1234789HpCDF	0.01	92	0.92	23. <del>9</del>	0.239	75.4	0.754
OCDF	0.0001	109	0.0109	24.1	0.00241	108	0.0108
TEQ Sum			991.0		767.0		767 <b>.9</b>
Definitions:			- <u></u>			<u> </u>	
DL-	detection limit						
HxCDD -	hexachlorodiben						
HxCDF	hexachlorodiben						
HpCDD -	heptachlorodiber						
HpCDF -	heptachlorodiber						
Interntl	International (W	orld Health C	rganization [W	/HO])			
ND -	not detected						
OCDD -	octachlorodibenz				•		
OCDF -	octachlorodibenz						
PeCDD -	pentachlorodiben	*					
PeCDF -	pentachlorodiben						
TCDD -	tetrachlorodibenz	o-p-dioxin					
TCDF -	tetrachlorodibenz	ofuran					
TEF -	Toxic equivalence	y factor					
TEQ -	Toxic equivalenc	y quotient					
Madan							

Notes:

<u>, </u>}

**ئ** ۲

Values in parentheses = detection limits NDs evaluated as not present (i.e., zero)



Date: 29-NOV-05 Lab Job Number: 182724 Project ID: 16017.08 Location: Ft Bragg-Site Assessment

ANALYTICAL REPORT

Prepared form

Actón Mickelson Environmental 5175 Hilledale Cir El Dorado Hills, CA 95762

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:	Englight Manager
Reviewed by:	Operacibme Manager

This package may be reproduced only in its entirety.

138

Page 1 of

NELAP # 01107CA



#### CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received; 182724 Acton Mickelson Environmental 16017.08 Ft Bragg-Site Assessment 10/25/05 10/25/05

This hardcopy data package contains sample and QC results for fourteen soil samples and one water sample, requested for the above referenced project on 10/25/05. The samples were received on ice and intact.

#### TPH-Purgeables and/or BTXE by GC (EPA 8015B) Water: No analytical problems were encountered.

TPH-Purgeables and/or BTXE by GC (EPA 8015B) Soil:

Encore samples not analyzed within 48 hours were frozen. Low surrogate recoveries were observed for bromofluorobenzene (FID) in SS7.1 (lab # 182724-001) and SS7.2 (lab # 182724-002); the corresponding trifluorotoluene (FID) surrogate recoveries were within limits, and these low surrogate recoveries were confirmed by re-analysis. No other analytical problems were encountered.

#### TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B) Water:

N-butylbenzene was detected above the RL in the method blank for batch 107471; this analyte was not detected in the sample at or above the RL. No other analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B) Soil:

Encore samples not analyzed within 48 hours were frozen. Matrix spikes were not performed for this analysis due to insufficient sample volume. High recoveries were observed for 1,1-dichloroethene and trichloroethene in the MS/MSD for batch 107112; the parent sample was not a project sample, the LCS was within limits, the associated RPDs were within limits, and these analytes were not detected at or above the RL in the associated samples. High surrogate recovery was observed for 1,2-dichloroethane-d4 in DP ROAD-8.1-1 (lab # 182724-008); no target analytes were detected at or above RL in the sample. Low surrogate recoveries were observed for dibromofluoromethane in the MS/MSD for batch 107112; the parent sample was not a project sample. High surrogate recovery was also observed for dibromofluoromethane in SS7.2 (lab # 182724-002); no target analytes were detected at or above RL in the sample. Methylene chloride was detected between the MDL and the RL in the method blank for batch 107112; this analyte was not detected in samples at or above the RL. Methylene chloride was detected between the MDL and the RL in many samples; this analyte is a common laboratory contaminant. No other analytical problems were encountered.

Page 1 of 2



#### CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 182724 Acton Mickelson Environmental 16017.08 Ft Bragg-Site Assessment 10/25/05 10/25/05

#### Semivolatile Organics by GC/MS (EPA 8270C):

SS7.1 (lab # 182724-001) and SS7.2 (lab # 182724-002) were diluted due to the dark, viscous nature of the sample extracts. No other analytical problems were encountered.

#### Polychlorinated Biphenyl Congeners (EPA 8082):

High surrogate recovery was observed for TCMX in DP-ROAD-4.1-1 (lab # 182724-005); no target analytes were detected in the sample. No other analytical problems were encountered.

#### Metals (EPA 6010B and EPA 7471A):

Low recoveries were observed for silver and arsenic in the MS/MSD for batch 107417; the parent sample was not a project sample, the BS/BSD were within limits, and the associated RPDs were within limits. High recoveries were observed for a number of analytes; the BS/BSD were within limits. High RPD was observed for nickel, lead, and zinc; the RPD was acceptable in the BS/BSD. Low recoveries were observed for lead in the MS/MSD for batch 107415; the parent sample was not a project sample, and the associated RPD was within limits. No other analytical problems were encountered.

#### Dioxins and Furans (EPA 8290):

Alta Analytical Lab, Inc. in El Dorado Hills, CA performed the analysis. Please see the Alta Analytical Lab, Inc. case narrative.

Page 2 of 2

Acton • Mickelson • Environmental, Inc. B       Standard TAT       Page Lot 2       Chain of Custody and Analysis Request Form         Chain of Custody and Analysis Request Form       Public Custody and Analysis Request Form         Control Custody and Analysis Request Form       Public Custody and Analysis Request Form         Standard TAT         Public Custody and Analysis Request Form         Standard TAT         Public Custody and Analysis Request Form         Standard TAT         Public Custody and Analysis Request Form																								
Geotracker Global ID				•	•	nc.д	Stand	lard TA	AT			Pag	e_/_	of_	2		Cha	in o	f Cu	sto	dy	460	<u>}</u>	S
Stand Results to:         Proliminary Pax Result           GT7 = Hillsdele Circle, Suite 100         Frage           GT7 = Hillsdele Circle, Suite 100         Frage           GT7 = Hillsdele Circle, Suite 100         Frage           GT7 = Hillsdele         Sample Rescupt Log-In Confirmation           General Hills         Sample Rescupt Log-In Confirmation           GT7 = Hillsdele         Collected           General Hills         Sample Rescupt Log-In Confirmation           General Hillsdele         Collected           General Hills         Sample Rescupt Log-In Confirmation           Hall Second         Field Point ID           Sample Rescupt Log-In Confirmation         Sample Rescupt Log-In Confirmation           -0.01         SS 7.1         //24/e5 092.0           -0.02         SS 7.2         //24/e5 092.0           -0.03         As 7.1         //24/e5 092.0           -0.04         As 7.2         /24/e5 092.0           -0.05         DP-Road -4.1-1         //4/e5 112.7           -007         DP Road -4.2.1         //4/e5 112.7           -007         DP Road -4.2.1         //4/e5 114.0           -008         DP Road -4.2.1         //4/e5 114.0           -009         DP Road -4.2.1         /4/e5 114.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>RUSH</td> <td>TAT</td> <td></td> <td>24</td> <td>hr.</td> <td>TAT'</td> <td><u>ן</u></td> <td><u>]</u> 4</td> <td>3 hr. 1</td> <td>'ATL-</td> <td></td> <td></td> <td>72 h</td> <td>r. TA</td> <td>त अ</td> <td>A 55</td> <td>ay TAT</td> <td>Г</td>							RUSH	TAT		24	hr.	TAT'	<u>ן</u>	<u>]</u> 4	3 hr. 1	'ATL-			72 h	r. TA	त अ	A 55	ay TAT	Г
Lab ID D.Lab Use ONLY       Field Point ID       Sample ID       Collected Collected       Time Collected       Collected Collected       Collected Colected <thcolle< td=""><td></td><td>Dai ID <u>7060</u></td><td></td><td>•</td><td>•</td><td></td><td></td><td></td><td></td><td>ers</td><td></td><td></td><td></td><td></td><td>⁄ ý</td><td>X</td><td>X</td><td>N.</td><td>$\searrow$</td><td>$\nearrow$</td><td>$\mathcal{X}_{\mathcal{C}}$</td><td></td><td>5</td><td></td></thcolle<>		Dai ID <u>7060</u>		•	•					ers					⁄ ý	X	X	N.	$\searrow$	$\nearrow$	$\mathcal{X}_{\mathcal{C}}$		5	
Like USE ONLY       Plan Point ID       Collected Collected       Collected Colected Colected       Collected Collected Coll	5175 Hillsdale Circ El Dorado Hills, CA (916) 939-7550, FA	A 95762 X (916) 939-7570	I KKK	Sample Electro Geotra Raw D	e Receipt/ Log-In C nic Data Deliverabl cker EDF ata Deliverables			Matrix	Container	Number of Contain	Preservative	Recue				ALL ALL			ALLAND VIE	, Y Y		075		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Field Point ID		Sa	mple ID			d			6-0		5	]ر	VC/		¥ <b>*3</b>	( <b>G</b>			<u> </u>	Comme	nts	
-003       AS 7.1       7.1/24/65       1010       5       PT       C       X       X       X         -007       DP-Road-4.1-1       7.4/65       1127       5       PT       1       C       X       X       X         -007       DP-Road-4.1-1       7.4/65       1127       5       PT       3       C       X       X       X         -001       DP-Road-4.2-1       7.4/65       1135       5       PT       3       C       X       X       X       X         -007       OP Road-4.3-1       7.4/65       1135       5       PT       3       C       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X <td>182724-001</td> <td></td> <td>55</td> <td>57.1</td> <td></td> <td></td> <td></td> <td></td> <td>PT</td> <td>1</td> <td>0</td> <td>X</td> <td>X '</td> <td>X</td> <td>X</td> <td>X</td> <td></td> <td></td> <td></td> <td>ļ</td> <td></td> <td></td> <td></td> <td></td>	182724-001		55	57.1					PT	1	0	X	X '	X	X	X				ļ				
-003       AS 7.1       /24/05       1010       S PT I C       X X X         -004       AS 7.2       /24/05       1020       S PT I C       X X X         -005       DP-Doad -4.1-1       /24/05       1127       S P 3 C       X X X         -006       DP-Doad -4.1-1       /24/05       1127       S P 3 C       X X X       X X         -001       DP-Doad -4.2-1       /24/05       1125       S P 3 C       X X X       X X         -007       OP Doad -4.3-1       /24/05       1125       S P 3 C       X X X       X X         -007       OP Doad -4.3-1       /24/05       1125       S P 3 C       X X X       X X         -008       NP Noed -8.1-1       /24/05       1140       S P 3 C       X X X       X X         -009       NP Noed 8.2-1       /24/05       140/ S P 3 C       X X X       X X       X         -009       NP Noed 8.2-1       /24/05       140/ S P 3 C       X X X       X X       X         -009       NP Noed 8.2-1       /24/05       140/ S P 3 C       X X X       X X       X         -010       NP Noed 8.2-1       /24/05       140/ S P 3 C       X X X       X X       X X       X X	- 902		55	7.2	'	124/05	0940	13	PT		$\mathbf{\hat{b}}$	X	Υ	χŀ	X	X								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-003								PT	1	C				X	X	X							
-006       DP-Roud-4,2-1       17465       11355       S       C       X       X       X       X         -007       DP Roud-4,3-1       12465       1149       S       C       X       X       X       X         -007       DP Roud-4,3-1       12465       1149       S       C       X       X       X       X         -008       DP Roud-8,1-1       12465       140/       S       C       X       X       X       X         -009       DP Roud 8,3-1-1       12465       140/       S       C       X       X       X       X         -009       DP Roud 8,3-1       124/65       140/       S       C       X       X       X       X         -010       DP Roud 8,3-1       124/65       146       S       C       X       X       X       X         Signature       Date       Time       Signature       Date       Time         Received by:	- 004		A	57.7				<u> </u>	PT	( ·	C				X	X	X	) 						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-005	· ·····	pp	-Road	-4.1-1	9/24/05	1127		PT	13	Ĉ			X	<u>X</u>	X	}	X	X		, 	· 		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-906		DP	-Road	-4.2-1	124/05	1135	- 5	PT E	3	C	 		X	X	X	 	X	$ \chi $					
-008       Df Nould - 8.1-1       14/25 140/       5 C 3 C       X X       X X       X X         -009       Df Nould 8.2-1       1/4/15 14/6 5       C 3 C       X X       X X       X         -010       Df Nould 8.3-1       1/4/15 14/6 5       C 3 C       X X       X X       X         Signature       Date       Time       Signature       Date       Time         Relinquished by:	- 907		OP	Acad	- 4,3-1	124/05	1149	3	E	3	Ċ		. 	X	¥ 🗌	X	 	x	X					
-010       DP hoad 8, 3-1       24/05/1430 5 € 3 C       X X X X       E = Ewore         Signature       Date       Time       Signature       Date       Time         Relinquished by:	-008		DP	how	-8.1-1	124/05	140/	15	E	3	C			$\times$	X	X		X	X			<u> </u>	. ·.	
Signature       Date       Time       Signature       Date       Time         Relinquished by:	-009		DP	Hoad	8.2-1	1/24/15	1416	5	E	3	<u>C</u> .			<u>×</u>	X	X		X	A	•	•	. <u>.</u>	<u></u>	
Relinquished by:       Image: Container: GB - Glass Jar, SC - Sourma Canister; TD - Todiar       Image: Container: GB - Glass Jar, SC - Sourma Canister; TD - Todiar         Preservative: C - Cold; HS - Sulturic Acid; HN - Nitric Acid; NA - Sodium Hydroxide; O - Other       Project Name and Location:       Image: Container: Image: Container: Container: GI - Gray Color of the container: GI - Gray Color of the container: GI - Glass Jar, SC - Sourma Canister; TD - Todiar	[ <u>Y</u> ]		DP	head					E	3	C		(	X	<u>x </u>	X	<u> </u>	Ļχ			E=			
Received by:		Theman Pa	. 1	1	und it	······································		-		ned b	v:		, ,	•	· · · · · · · · · · · · · · · · · · ·	<del>-</del> -		╌┼╍╌╴	Dai					
Received by:		Ing En in													· · · · · ·			-					·	
Matrix: W - Water; DW - Drinking Water; SW - Surface Water; GW - Ground Water; WW - Waste Water; RW - Reagent Water; S - Soil; SE - Sediment; SV - Soil Vapor; AA - Ambient Alr; WS - Waste (Solid); O - Other Container: GB - Glass Bottle (Amber); V - 40 ml VOA Vial; BT; ST, PT - Brass, Steel, and Plastic Tube; P - Polythethylene; GJ - Glass Jar, SC - Summa Canister; TD - Tedlar Preservative: C - Cold; HS - Sulfuric Acid; HC - Hydrochloric Acid; NA - Sodium Hydroxide; O - Other Project Name and Location: <u>Former</u> <u>Georgia - Pacific Surmar II</u> Project Name and Location: <u>Former</u> <u>Georgia - Pacific Surmar II</u> Project Number: <u>Ile017.08</u> Project Number: <u>Ile017.08</u> Projec	Relinquished by:							Relinc	uish	ied b	y:							-	·	·		`		
Container: GB - Glass Bottle (Amber); V - 40 ml VOA Vial; BT, ST, PT - Brass, Steel, and Plastic Tube; P - Polythethylene; GJ - Glass Jar, SC - Summa Canister; TD - Tedlar Preservative: C - Cold; HS - Sulturic Acid; HC - Hydrochloric Acid; HN - Nitric Acid; Na - Sodium Hydroxide; O - Other Sampled by: Thomas Carvell	Received by:							Recei	ved	by: _			<u> </u>	• •		: م <u>یری</u>	<u>.</u>					<u> </u>		
ORIGINAL – Laboratory (Return with Report) YELLOW - Laboratory PINK - Originator	HW - Reagent Water; S - : Container: GB - Glass Boi P - Polythethylene; GJ - Gl	Soil; SE - Sediment; SV - ttle (Amber); V - 40 ml VO lass Jar, SC - Summa Car	Soil Var A Viai; E tister; T	oor: AA - A 3T, ST, PT D - Tedlar	mbient Alr; WS - Waste ( - Brass, Steel, and Plast	(Solid); O - Oth lic Tube;	P - Other S	Project N Sampled	lumb by:	er: <u>–</u>	<u>14</u> ha	2 <u>0.1</u> May		Vame	vtt [,	2 e o 1 		a_ ceivin	Pa glab:	Ci Ci s				

ain	of Cust	ckelson • ody and Anal pai ID 7060	ysis R	leques	st Form	inc. 🔉	Stand RUSI	•		24	1		e	-	18 hi						r. TA		4(	5 15 da	ay TA	T
nd Re 75 Hill Dorado 16) 939	suits to: sdale Circ Hills, CA -7550, FA J-A	le, Suite 100	P S E G R	reliminar ample Ri lectronic eotracke aw Data	y Fax Result sceipt/ Log-In C Data Deliverab		1	Matrix	Container	Number of Containers	Preservative	Profes	A REAL						reger H& Y	JU JU		[.]   			<b>?</b>	•
Lab (LAB US)		Field Point ID		Samp		Date Collected				ļ	<u> </u>				0	0		-9					Com	imeni	ts	)*
82724	[- 0]]	· · · ·	DP-A	and 4,1	TB22_	1/24/05	1130	Øω	V	3	407					•	X	$ \chi $					•	• •		
1	-912	• • •	<b>-</b> -	E-27		10/24/05		5	PF	3	C	X	X.	X	X	V	·		ĺ	· ·		-				. [
· .	-013	<u></u>		Road		10/24/02		-5	Pr	1	C	X	X	×	X	- <u> </u> - X			·	-	•				<b>،</b>	
	-014	Ann 1997 - The Constant of Constant				1/24/05			PF	1/2		ÿ	$\Delta$					,	 	•,						
			09-1	Road Road i	62-1	1/24/05	1557	ł	E PT	2		4			<u>×</u>		<u> </u>			•				<u> </u>		
	-915		D8-1	Stad 1	.3-/	105	1551	-P-	E	2		X	X		<u> </u>	X										<u> </u>
					- \ \	-	<u> </u>				<u> </u>											-	- 			·
	-		ļ.,					<u> </u>	<u> </u>	<u> </u> ;	. 											A		<del>در مع</del> مد الم		
				· .			<u></u>	·							-			· · .			,			••••••••••••••••••••••••••••••••••••••		
	•	· · ·														,				•				•		
	1	бененттикинан болон <u>жана калан</u> ан калан к			×	>																				
Bignature		a n			Date	Time		Signat				·····	,	-			•			Da	te			Tin	18	
Relinquis	*- <u></u>	Amas Chin	-f-f-	- 40	125 105	- 080		Reline		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	у:	د. ۱۹۹۹ میں اور							-			<u> </u>				<b>-</b>
leceived lelinguis	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	JA G - UNN M		<u> </u>	1-25-05	14/5		Reçei Reline		······															````	
Received			······			<u> </u>		Recei							:		······	-	<u> </u>						, <del></del>	
trix: WV / - Reager ntainer: C Polytheth	Vater; DW - D It Water; S : IB - Glass Bo viene; GJ - Gl	rinking Water; SW - Surfa Soil; SE - Sediment; SV - ttle (Amber); V - 40 ml VC lass Jar, SC - Summa Ca 3 - Sulfuric Adid; HC - Hyd	Soil Vapor; A Vist; BT, S nister; TD -	AA - Amble ST, PT - Bre Tediar	nt Air; WS - Waste ass, Steel, and Plas	(Solid); O - Oti tic Tube;	F	Project N Project N Project N	Vame Vumb	and I		01	109	3 Ar	vo i	v 1	6					Sic tis	-	iun õmp		



## Polynuclear Acomatics by GC/MS

Lab #:	182724	Location:	Ft Bragg-Site Assessment
Client:	Acton Mickelson Environmental	Prep:	EPA 3550B
Project#:	16017.08	Analysis:	EPA 8270C
Field ID:	AS7.1	Batch#:	107268
Lab ID:	182724-003	Sampled:	10/24/05
Matrix:	Soil	Received:	10/25/05
Units:	ug/Kg	Prepared:	10/31/05
Basis:	as received	Analyzed:	11/03/05
Diln Fac:	1.000		

Analyte	R	-sult	RĹ	MDL
Naphthalene		1.70	66	43
Acenaphthylene		52 J	្ថេត	35
Acenaphthene	ND		66	38
Fluorene	ND		66	34
Phenanthrene		460	66	39
Anthracene	ND		66	39
Fluoranthene		550	66	38
Pyrene		370	66	40
Benzo(a)anthracene		36 J	66	35
'hrysene		87	66	39
Jenzo(b)fluoranthene		59 J	66	32
Benzo(k)fluoranthene		52 J	66	46
Benzo(a)pyrene	ND		66	35
Indeno(1,2,3-cd)pyrene	ND		66	36
Dibenz(a,h)anthracene	ND		66	38
Benzo(g,h,i)perylene	ND		66	33

Surrogate	e 883	C Limits	
Nitrobenzene-d5	67	38-120	
2-Fluorobiphenyl	77	41-120	
Terphenyl-d14	56	32-120	

J= Estimated value ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1



	Polynuclear	Aromatics by G	C/MS
Lab #:	182724	Location:	Ft Bragg-Site Assessment
Client:	Acton Mickelson Environmental	Prep:	EPA 3550B
Project#:	16017.08	Analysis:	EPA 8270C
Field ID:	AS7.2	Batch#:	107268
Lab ID:	182724-004	Sampled:	10/24/05
Matrix:	Soil	Received:	10/25/05
Units:	ug/Kg	Prepared:	10/31/05
Basis:	as received	Analyzed:	11/08/05
Diln Fac:	1.000	·	· · · · · · · · · · · · · · · · · · ·

Analyte	Result	RL	MDLi
Naphthalene	150	67	36
Acenaphthylene	ND	67	28
Acenaphthene	ND	67	34
Fluorene	ND	67	39
Phenanthrene	420	67	37
Anthracene	ND	67	30
Fluoranthene	. 390	67	36
Pyrene	290	67	35
Benzo(a)anthracene	ND	67	33
Chrysene	65 J	67	31.
enzo(b)fluoranthene	35 J	67	29
Benzo(k)fluoranthene	ND	67	43
Benzo(a)pyrene	ND	67	27
Indeno(1,2,3-cd)pyrene	ND	67	38
Dibenz(a,h)anthracene	ND	67	36
Benzo(g,h,i)perylene	ND	67	39

Surrogate	8REC	Limits	
Nitrobenzene-d5	78	38-120	
2-Fluorobiphenyl	84	41-120	
Terphenyl-d14	54	32-120	

J= Estimated value 'D= Not Detected %L= Reporting Limit
MDL= Method Detection Limit
Page 1 of 1

ł

÷.

<u>م</u> 1



#### Batch QC Report

#### Polynuclear Aromatics by GC/MS 182724 Lab #: Location: Ft Bragg-Site Assessment Client: Acton Mickelson Environmental Prep: EPA 3550B Project#: 16017.08 Analysis: EPA 8270C BLANK Type: Diln Fac: 1,000 Lab ID: QC315142 Batch#: 107268 Matrix: Soil Prepared: 10/31/05 Units: ug/Kg Analyzed: 11/01/05 Basis: as received

Analyte	Result	KI.	MDL
Naphthalene	ND	67	44
Acenaphthylene .	ND	67	35
Acenaphthene	ND	67	38
Fluorene	ND	67	35
Phenanthrene	ND	67	40
Anthracene	ND	67	· 39
Fluoranthene	. ND	67	39
Pyrene	ND	67	. 41
Benzo(a)anthracene	ND .	67	36
Chrysene	ND	67	40
mzo(b)fluoranthene	ND	67	32
Benzo(k)fluoranthene	ND	67	46
Benzo(à)pyrene	ND	67	36
Indeno(1,2,3-cd)pyrene	ND	67	36
Dibenz(a,h)anthracene	ND	67	39
Benzo(g,h,i)perylene	ND	67	34

Surrogate	%REC	Linițs
Nitrobenzene-d5	56	38-120
2-Fluorobiphenyl	57	41-120
Terphenyl-d14	58	32-120

D= Not Detected L= Reporting Limit MDL= Method Detection Limit Page 1 of 1



Batch QC Report

	Polynudlear	Aromatics by 0	C/MS
Lab #:	182724	Location:	Ft Bragg-Site Assessment
Client:	Acton Mickelson Environmental	Prep:	EPA 3550B
Project#:	16017.08	Analysis:	EPA 8270C
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC315300	Batch#:	107311
Matrix:	Soil	Prepared:	11/01/05
Units:	ug/Kg	Analyzed:	11/08/05
Basis:	as received	•	· · · · · ·

Analyte	Result	RL	MDL
Naphthalene	ND	66	41
Acenaphthylene	ND	66	33
Acenaphthene	ND	. 66	36
Fluorene	ND	66	33
Phenanthrene	ND	66	30
Anthracene	ND	.66	34
Fluoranthene	ND	66	35
Pyrene	ND	66	24
Benzo(a)anthracene	ND	66	22
Chrysene	ND .	66	24
enzo(b)fluoranthene	ND	66	34
Lenzo(k)fluoranthene	ND	66	26
Benzo(a)pyrene	ND	66	29
Indeno(1,2,3-cd)pyrene	ND	66	32
Dibenz(a,h)anthracene	ND	66	26
Benzo(g,h,i)perylene	ND	66	26

Surrogate	SREC	Limits	
Nitrobenzene-d5	80	38-120	
2-Fluorobiphenyl	75	41-120	
Terphenyl-d14	90	32-120	

"D= Not Detected _= Reporting Limit MDL= Method Detection Limit Page 1 of 1



Batch QC Report

. 3

Folynuclear Aromatics by GC/MS

Lab #:	1.82724	Location:	Ft Bragg-Site Assessment
Client:	Acton Mickelson Environmental	Prep:	EPA 3550B
Project#:	16017.08	Analysis:	EPA 8270C
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC316094	Batch#:	107505
Matrix:	Soil	Prepared:	11/07/05
Units:	ug/Kg	Analyzed:	11/08/05
Basis:	as received		

Analyte	Reault	RL	MDL
Naphthalene	ND	66	43
Acenaphthylene	ND	66	35
Acenaphthene	ND	66	38
Fluorene	ND	66	. 34
Phenanthrene	ND	66	39
Anthracene	ND	66	39
Fluoranthene	ND	66	38
Pyrene	ND	66	40
Benzo(a) anthracene	ND	66	35
Chrysene	ND	66	39
enzo(b)fluoranthene	ND	66 .	32
enzo(k)fluoranthene	ND	66	46
Benzo(a)pyrene	ND	66	35
Indeno(1,2,3-cd)pyrene	ND ·	66	36
Dibenz (a, h) anthracene	ND	66	38
Benzo(g,h,i)perylene	ND	66	33

Surrogate	%REC	Linits	
Nitrobenzene-d5	73	38-120	
2-Fluorobiphenyl	70	41-120	
Terphenyl-d14	78	32-120	

D= Not Detected = Reporting Limit MDL= Method Detection Limit Page 1 of 1



Batch QC Report

## Polynuclear Aromatics by GC/MS

Lab #:	182724	Location:	Ft Bragg-Site Assessment
Client:	Acton Mickelson Environmental	Prep:	EPÀ 3550B
Project#:	16017.08	Analysis:	EPA 8270C
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC315143	Batch#:	107268
Matrix:	Soil	Prepared:	10/31/05
Units:	ug/Kg	Analyzed:	11/01/05
Basis:	as received		

Analyte	Spiked	Regult	SRE(	C Limits
Naphthalene	1,646	1,015	62	38-120
Acenaphthylene	1,646	1,048	64	36-120
Acenaphthene	1,646	1,042	63	34-120
Fluorene	1,646	1,104	67	36-120
Phenanthrene	1,646	1,041	63	36-120
Anthracene	1,646	1,074	65	35-120
Fluoranthene	1,646	1,107	67	36-120
Pyrene	1,646	1,110	67	37-120
Benzo(a)anthracene	1,646	933.6	57	37-120
Chrysene	1,646	1,128	68	36-120
enzo(b)fluoranthene	1,646	1,062	65	31-120
-senzo(k)fluoranthene	1,646	1,050	64	34-120
Benzo(a)pyrene	1,646	1,082	66	39-120
Indeno(1,2,3-cd)pyrene	1,646	1,009	61	28-121
Dibenz(a,h)anthracene	1,646	1,039	63	29-125
Benzo(g,h,i)perylene	1,646	1,028	62	21-122

Burrogate	%RE(	C Limits
Nitrobenzene-d5	61	38-120
2-Fluorobiphenyl	62	41-120
Terphenyl-d14	62	32-120



Batch QC Report

	Polynuclear	Aromatics by G	8C / M 5
Lab #:	1.82724	Location:	Ft Bragg-Site Assessment
Client:	Acton Mickelson Environmental	Prep:	EPA 3550B
Project#:	16017.08	Analysis:	EPA 8270C
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC315301	Batch#:	107311
Matrix:	Soil	Prepared:	11/01/05
Units:	ug/Kg	Analyzed:	11/08/05
Basis:	as received		

Analyte	Spiked	Result	%RE(	2 Limits
Naphthalene	1,661	1,118	67	38-120
Acenaphthylene	1,661	1,078	65	36-120
Acenaphthene	1,661	1,023	62	34-120
Fluorene	1,661	1,057	64	36-120
Phenanthrene	1,661	1,052	63	36-120
Anthracene	1,661	1,063	64	35-120
Fluoranthene	1,661	1,069	64	36-120
Pyrene	1,661	1,054	63	37-120
Benzo(a)anthracene	1,66L	871.2	52	37-120
Chrysene	1,661	1,075	65	36-120
enzo(b)fluoranthene	1,661	943.4	57	31-120
enzo(k)fluoranthene	1,661	933.9	56	34-120
Benzo(a)pyrene	1,661	1,026	62	39-120
Indeno(1,2,3-cd)pyrene	1,661	1,115	67	28~121
Dibenz(a,h)anthracene	1,661	1,145	69	29-125
Benzo(g,h,i)perylene	1,661	1,115	67	21-122

Surrogate	%RBC	1 Limits	
Nitrobenzene-d5	66	38-120	
2-Fluorobiphenyl	61	41-120	
Terphenyl-d14	59	32-120	



Batch QC Report

	Polynucle	ar Aromatics by GC	
Lab #;	182724	Location:	Ft Bragg-Site Assessment
Client:	Acton Mickelson Environmental	Prep:	EPA 3550B
	16017.08	Analysis:	EPA 8270C
Matrix:	Soil	Batch#:	107505
Units:	ug/Kg	Prepared:	11/07/05
Basis:	as received	Analyzed:	11/08/05
Diln Fac:	1.000		

Type: BS		Lab ID: Q	QC316095	
Analyte	Spiked	Result	REC	Limits
Naphthalene	1,687	1,457	86	38-120
Acenaphthylene	1,687	1,410	84	36-120
Acenaphthene	1,687	1,367	81	34-120
Fluorene	1,687	1,459	87	36-120
Phenanthrene	1,687	1,443	86	36-120
Anthracene	1,687	1,463	87	35-120
Fluoranthene	1,687	1,573	93	36-120
Pyrene	` 1,687	1,335	79	37-120
Benzo (a) anthracene	1,687	1,219	72	37-120
Chrysene	1,687	1,409	84	36-120
Benzo(b)fluoranthene	1,687	1,418	84	31-120
Benzo(k)fluoranthene	1,687	1,353	80	34-120
Benzo(a)pyrene	1,687	1,396	83	39-120
Indeno (1, 2, 3-cd) pyrene		1,344	80	28-121
Dibenz (a, h) anthracene	1,687	1,312	78	29-125
<pre>^ ¬enzo(g,h,i)perylene</pre>	<u> </u>	1,320	78	21-122
Surrogate	6REC Limits			
Nitrobenzene-d5	81 38-120			
2-Fluorobiphenyl	81 41-120			ľ
Terphenyl-d14	<u> </u>			

Type:	BSD			Lab ID:		QC316096			
	Analyte		Spiked		Result	#REC	Limi te	RPD	Lim
Naphthale	ne		1,656		1,337	81	38-120	7	20
Acenaphth	ylene		1,656		1,276	77	36-120	8	20
Acenaphth	ene		1,656		1,253	76	34-120	7	20 20
Fluorene			1,656		1,321	80	36-120	8	20
Phenanthro			1,656		1,308	79	36-120	8	20
Anthracen			1,656		1,348	, · 81	35-120	6	20
Fluoranth	ene		1,656		1,446	67	36-120	7,	20
Pyrene	1		1,656		1,249	75	37-120	5	20
Benzo(a)ai	nthracene		1,656		1,132	68	37-120	6	20
Chrysene	•		1,656		1,323	80	36-120	4	20
	luoranthene		1,656		1,227	74	31 - 120	13	20
	luoranthene		1,656		1,282	77	34-120	4	20
Benzo (a) py	yrene		1,656		1,266	76	39-120	8	20
	2,3-cd)pyrene		1,656		1,222	74	28-121	8	20
	n) anthracene	•	1,656		1,178	71	29-125	9	20
Benzo(q, h)	,i)perylene		1,656		1,193	72	21-122	8	20
									-
	Surrogate	SREC	Limits		<u> </u>				
Nitrobenze		75	38-120						
2-Fluorobi	ipnenyi	76	41-120						
Terphenyl.	-d14	75	32-120						

. -

RPD= Relative Percent Difference Page 1 of 1



## Batch QC Report

	Folynuclear Arc	matics by GC/M	8
Lab #: 182724		Location:	Ft Bragg-Site Assessment
Client: Acton Mickelso	n Environmental	Prep:	EPA 3550B
Project#: 16017.08		Analysis:	EPA 8270C
Field ID: ZZZZZZZ		Batch#:	107268
MSS Lab ID: 182655-	013		10/20/05
Matrix: Soil	1	Received:	10/21/05
Units: ug/Kg		Prepared:	10/31/05
Basis: as rece	ived	Analyzed:	11/02/05
Diln Fac: 2.000			·····

Type:	MS			Lab ID:	ł	QC3	15144		
	Analyte	MS	S Recult	Sr	iked		Result	%REC	Limits
Naphthaler	1e		<86.71	1,	681.		1,145	68	42-120
Acenaphthy	lene		<69.36	1,	681		1,113	66	37-120
Acenaphthe	ene		<75.66	1,	681		1,406	84	36-120
Fluorene			78.52	1,	681		1,160	64	36-120
Phenanthre	ene		389.2	1,	681		1,632	74	32-123
Anthracene	2		78.41	1,	681		1,460	82	34-120
Fluoranthe	ene		442.1	1,	681		1,452	60	31-120
Pyrene .			357.2	1,	681		1,450	65	35-130
Benzo(a)ar	thracene		123.2	1,	681		1,094	58	40-120
Chrysene			207.7	1,	681		1,356	68 .	39-120
Benzo(b)fl	uoranthene		102.3	· 1,	681		1,108	60	32-120
	uoranthene		115.4	1,	681		1,043	55	33-127
Benzo(a)py	rene		107.9	1,	681		1,165	63	39-120
ndeno (1, 2	,3-cd)pyrene		<71.51		681		733.1	44	15-120
ibenz(a, l	anthracene		<76.79	1,	681	•	914.9	54	22-120
, Benzo(g,h,	i)perylene		<66.27	1,	681		662.8	39	7-120
	Surrogate	%RI	C Limits						
Nitrobenze		85	38-120						·
2-Fluorobi		59	41-120						
Terphenyl-	d14	66	32-120						•

Type: MSD		Lab ID:	QC315145			•
Analyte	Spike	d Result	961	ter Limita	REI	) Liim
Naphthalene	1,653	1,189	72	42-120	5	-32
Acenaphthylene	1,653	1,154	70	37-120	5	31
Acenaphthene	1,653		82	36-120	3	32
Fluorene	1,653		68	36-120	6	32
Phenanthrene	1,653		77	32-123	4	36 -
Anthracene	1,653		81	34-120	1	31
Fluoranthene	1,653		57	31-120	3	34
Pyrene	1,653		69	35-130	4	36
Benzo (a) anthracene	1,653		61	40-120	4	32
Chrysene	1,653		$\overline{72}$	39-120	4	35
Benzo(b)fluoranthene	1,653		. 63	32-120	5	34
Benzo (k) fluoranthene	1,653		64	33-127	13	34
Benzo (a) pyrene	1,653		67	39-120	5	33
Indeno (1, 2, 3-cd) pyrene	1,653			15-120	6	41
Dibenz (a, h) anthracene	1,653	-		22-120	2	38
Benzo (g, h, i) perylene	1,653			7-120	7	43
	<u></u>	011.	032	1-240	<u> </u>	<u></u>
Surrogate	BREC Limi	ft al				
Nitrobenzene-d5	90 38-1					
2-Fluorobiphenyl	64   41-12					(
Terphenyl-dl4	68   32-12					



Batch QC Report

Polynuclear	Aromatics by G	C/MS
Lab #: 182724	Location:	Ft Bragg-Site Assessment
Client: Acton Mickelson Environmental	Prep;	EPA 3550B
Project#: 16017.08	Analysis:	EPA 8270C
Field ID: ZZZZZZZZZ	Batch#:	107311
MSS Lab ID: 182846-001	Sampled:	10/28/05
Matrix: Soil	Received:	10/28/05
Units: ug/Kg	Prepared:	11/01/05
Basis: as received	Analyzed:	11/07/05
Diln Fac: 1.000	<u></u>	

Type:	MS			Lab ID	:	QC3	15302		
	halyte	MSS	Result	9	piked		Result	%REC	Limits
Naphthalene	3		<41.09	1	,649		1,249	76	42-120
Acenaphthy	lene		<33.28	1	,649		1,217	74	37-120
Acenaphthe	ne		<35.95		,649		1,193	72	36-120
Fluorene			<32.64		,649		1,176	71	36-120
Phenanthrei	ne		<30.18		,649		1,211	73	32-123
Anthracene			<33.85		,649		1,220	74	34-120
Fluoranthe	ne		<34,64	1	,649		1,220	74	31-120
Pyrene			<24.30	1	,649		1,236	75	35-130
Benzo(a) ant	thracene		<21.75		,649		972.8	59	40-120
Chrysene			<23.99		,649		1,177	71	39-120
Benzo(b)flu	loranthene		<33,85		,649		-1,101	67	32-120
Benzo(k)flu	ioranthene		<26.40	1	,649		1,054	64	33-127
Benzo(a)py	rene		<29.24	1	,649		1,144	69	39-120
¹ ndeno (1, 2,	3-cd) pyrene		<31.56	1	,649		1,217	74	15-120
	anthracene		<25.56	1	,649		1,210	73	22-120
<u>enzo(g,h,i</u>	)perylene		<26.43	1	,649		1,213	74	7-120
	<u>urrogate</u>	*REC	:Limits						
Nitrobenzer		69	38-120						·
2-Fluorobig		73	41-120						
Terphenyl-d	<u>114</u>	72	32-120						

Туре:	MSD			Lab ID;		QC315303		۰.	
Χ	nalyte		Spiked		Result	*REC	Limits.	RPD	Lim
Naphthalene			1,676		1,364	81	42-120	7	32
Acenaphthyle	ne		1,676		1,318	79	37-120	6	31
Acenaphthene	· ·		1,676		1,350	81	36-120	11	32
Fluorene			1,676		1,284	. 77	36-120	7	32
Phenanthrene			1,676		1,334	80	32-123	8	36
Anthracene			1,676	•	1,310	78	34-120	5	31
Fluoranthene			1,676		1,348	. 80	31-120	8	34
Pyrene			1,676		1,351	81	35-130	7	36
Benzo(a) anth	racene		1,676		1,082	65	40-120	9	32
Chrysene			1,676		1,328	79	39-120	10	35
Benzo(b)fluo	ranthene		1,676		1,133	68	32-120	1	34
Benzo(k)fluo			1,676		1,273	76	33-127	17	34
Benzo(a)pyre	ne		1,676		1,255	75	39-120	8	33 [
Indeno $(1,2,3)$	-cd)pyrene		1,676		1,307	78	15-120	5	41
Dibenz(a,h)a	nthracene		1,676		1,307	78	22-120	6	38
Benzo(g, h, i)			1,676		1,276	76	7-120	_ 3	43
· · · · · · · · · · · · · · · · · · ·									
Su	rrogate	%RE	2 Limits						
Nitrobenzene		72	38-120						
2-Fluorobiph	enyl	73	41-120						
Terphenyl-d1	4 [.] .	77	32-120						.

RPD= Relative Percent Difference Page 1 of 1



		ſ	aliforni	a Tifel	e 26 Me	tale				
			-4111101111	а + <u>+</u> ст	C 20 11C	6443				
Lab #: 182724				Pro	oject#:	160	17.08			<u>Xeccesson</u>
Client: Acton Mi	ckelson	Environm	ental		cation:	Ft 1	Bragg-Site	Assessm	nent	1
Field ID:	AS7.1		- <b>1</b>	Bas	sis:	as	received			
Lab ID:	182724	-003		Di	ln Fac:	1.0	00			
Matrix:	Soil			Sat	npled:	10/3	24/05			
Units:	mg/Kg			Red	ceived:	10/	25/05			!.
Analyte	Re	sult	RL			Analyzed			alysie	
Antimony		0.015	0.0022				EPA 3050B		6010B	
Arsenic		0.11	0.0022			• •	EPA 3050B		6010B	
Barium		0.64	0.0022		• •		EPA 3050B		6010B	
Beryllium		0.0048	0.0022		•	, .	EPA 3050B		6010B	
Cadmium		0.018	0.0022				EPA 3050B		6010B	
Chromium		0.86	0.0022	107417	11/04/05	11/04/05	EPA 3050B	EPA	6010B	[
Cobalt		0.15	0.0022	107417	11/04/05	11/04/05	EPA 3050B	EPA	6010B	·
Copper		1.1	0,0022	107417	11/04/05	11/04/05	EPA 3050B	EPA	6010B	: 1
Lead		1.1	0.0022	107417	11/04/05	11/04/05	EPA 3050B	EPA	6010B	
Mercury		0.17	0.022	107117	10/26/05	10/26/05	METHOD	EPA	7471A	
Molybdenum	•	0,011	0.0022	107417	11/04/05	11/04/05	EPA 3050B	EPA	6010B	i
Nickel		0.82	0.0022	107417	11/04/05	11/04/05	EPA 3050B	EPA	6010B	·
¹ [°] elenium		0.0057	0.0022	107417	11/04/05	11/04/05	EPA 3050B	EPA	6010B	
ilver	ND		0.0022				EPA 3050B		6010B	;
Thallium		0.0025	0.0022				EPA 3050B		6010B	
Vanadium		0.65	0.0022	107417	11/04/05	11/04/05	EPA 3050B	EPA	6010B	1
Zinc		1.7	0.0089	107417	11/04/05	11/04/05	EPA 3050B	EPA	6010B	1

RL= Reporting Limit Page 1 of 1



				-	· · · · ·	
		0a1	ifarmi	a Title 26 Mets	ale	
			********	· IICIC IC ICCC	140	
Lab #: 182	724			Project#:	16017.08	
Client: Acto	on Mickelson Enví	ronment	al	Location:	Ft Bragg-Site A	ssessment
Field ID:	AS7.2			Basis:	as received	
Lab ID:	182724-004			Sampled:	10/24/05	
Matrix:	Soil			Received:	10/25/05	
Units:	mg/Kg					
•			, tr			
Analyte	Result	RL	Diln Fa		Analyzed Prep	
Antimony	0.38	0.27	1.000		11/04/05 EPA 3050B	
Arsenic	21	0.27	1.000		11/04/05 EPA 3050B	
Barium	2,200	5.5	20.00		11/04/05 EPA 3050B	
Beryllium	0.53	0.27	1.000	· · ·	11/04/05 EPA 3050B	
Cadmium	2,6	0.27	1.000		11/04/05 EPA 3050B	3
Chromium	46	0.27	1.000		11/04/05 EPA 3050B	
Cobalt	13	0.27	1.000		11/04/05 EPA 3050B	
Copper	100	0.27	1.000		11/04/05 EPA 3050B	
Lead	. 48	0.27	1.000	· · ·	11/04/05 EPA 3050B	EPA 6010B
Mercury	ND	0.020	1.000		10/26/05 METHOD	EPA 7471A [.]
Molybdenum	3.6	0.27	1.000		11/04/05 EPA 3050B	,
Nickel	43	0.27	1,000		11/04/05 EPA 3050B	
Selenium	0.99	0.27	1.000		11/04/05 EPA 3050B	
llver	ND	0.27	1.000		11/04/05 EPA 3050B	
Thallium	0.58	0.27	1.000	· · ·	11/04/05 EPA 3050B	•
Vanadium	51	0.27	1.000		11/04/05 EPA 3050B	,
Zinc	460	1.1	1.000	107417 11/04/05	11/04/05 EPA 3050B	EPA 6010B

.

= Not Detected RL= Reporting Limit Page 1 of 1



# Batch QC Report

	Californi	a Title 26 Meta	15	
Lab #:	182724	Location:	Ft Bragg-Site Assessment	
Client:	Acton Mickelson Environmental	Prep:	METHOD	:
Project#:	16017.08	Analysis:	EPA 7471A	
Analyte:	Mercury	Basis:	as received	:
Туре:	BLANK	Diln Fac:	1.000	i
Lab ID:	QC314517	Batch#:	107117	i
Matrix:	Miscell.	Prepared:	10/26/05	÷.,
Units:	mg/Kg	Analyzed:	10/26/05	
Rest ND	11.t. RL 0.020			: }
· · ·			· · ·	

= Not Detected RL= Reporting Limit Page 1 of 1



Batch QC Report

	Californi.	a Title 26 Meta	ils.
2 (P. 6)			4
Lab #;	182724	Location:	Ft Bragg-Site Assessment
Client:	Acton Mickelson Environmental	Prep:	EPA 3050B
Project#:	16017.08	Analysis:	EPA 6010B
Type:	BLANK	Diln Fac:	,1.000
Lab ID:	QC315731	Batch#:	107417
Matrix:	Soil	Prepared:	11/04/05
<b>Units</b> :	mg/Kg	Analyzed:	11/04/05
Basis	as received		

Analyte	». ?≑gult	RL	
Antimony	ND	0.25	
Arsenic	ND	0.25	
Barium	ND	0.25	
Beryllium	ND	0.25	
Cadmium	ND	0.25	
Chromium	ND	0.25	Ē
Cobalt	ND	0.25	÷
Copper	ND	0.25	1
Lead	ND	0.25	1
*olybdenum	MD	0.25	
lckel	ND	0.25	,
Selenium	ND	0.25	
Silver	MD	0.25	4
Thallium	. ND	0.25	4 4 2
Vanadium	ND	0.25	
Zinc	ND	1.0	

.



Batch QC Report

	Californ.	ia Title 26 Meta	1s
Lab #:	182724	Location:	Ft Bragg-Site Assessment
Client:	Acton Mickelson Environmental	Prep:	METHOD
Project#:	16017.08	Analysis:	BPA 7471A
Analyte:	Mercury	Diln Fac:	1.000
Matrix:	Miscell.	Batch#:	107117
Units:	mg/Kg	Prepared:	10/26/05
Basis:	as received	Analyzed:	10/26/05

Type	s Lab III -	Spiked	Result	· FREC	. Linits A	O Lim	
BS	QC314518	0.5000	0.5440	109	80-120		
BSD	QC314519	0.5000	0.5430	109	80-120 0	20	

RPD= Relative Percent Difference Page 1 of 1



Batch QC Report

Lab #: 18	2724	Location:	Ft Bragg-Site Assessment
Client: Ac	ton Mickelson Environmental	Prep:	METHOD
Project#: 16	017.08	Analysis:	BPA 7471A
Analyte:	Mercury	Diln Fac:	1.000
Field ID:	ZZZZZZZZZZ	Batch#:	107117
MSS Lab ID:	182721-001	Sampled:	10/24/05
Matrix:	Miscell.	Received:	10/25/05
Units:	mg/Kg	Prepared:	10/26/05
Basis:	as received	Analyzed:	10/26/05

Type	Liab (ID	MSS Result	Spiked	Result	%RE6	l imits	RPL	- Lin
MS	QC314520	0.01856	0.4237	0.4814	109	56-148		
MSD	QC314521		0,4902	0.5255	103	56-148	.5	20

RPD= Relative Percent Difference Page 1 of 1



ł

Batch QC Report

	Californ	ia Title 26 Metal:	
Lab #:	182724	Location:	Ft Bragg-Site Assessment
Client:	Acton Mickelson Environmental	Prep:	EPA 3050B
Project#:	16017.08	Analysis:	EPA 6010B
Matrix	Soil	Batch#:	107417
Units:	mg/Kg	Prepared:	11/04/05
Basis:	as received	Analyzed:	11/04/05
Diln Fac:	1.000	±	

Түре:	BS	Lab ID:	QC315	732		ŝ
Anal	vte	Spiked	Result	8REC	liimits	
Antimony		100.0	99.08	99 -	80-120	.
Arsenic		50,00	50.44	101	80-120	
Barium		100.0	100.6	101	80-120	1
Beryllium		2.500	2.522	101	80120	•
Cadmium		10.00	10.27	103	80-120	·
Chromium		100.0	100.1	100	80-120	
Cobalt		25,00	25.14	101	80-120	
Copper.		12,50	12.40	99	80-120	2
Lead		100.0	99.64	100	80-120	1
Molybdenum		20.00	20.70	103	80-120	
Nickel		25.00	25.57	1.02	80-120	:
Selenium		50.00	50.58	101	80-120	. <b>1</b>
Silver		10.00	9.328	93	80-120	•
Thallium		50.00	50.54	101	80-120	i
Vanadium		25.00	25.13	101	80-120	
inc		25.00	25.06	100	80-120	

BSD Lab ID: QC315733 Type: Analyte Spiked Result SREC Limits RPD Lim 98 Antimony 100.0 97.77 20 20 80-120 1 49.56 97.88 23 50.00 99 80-120 Arsenic 80-120 Barium 100.0 98 20 Beryllium Cadmium 333333223232323233 20 2.500 2.445 98 80-120 10.00 9.971 100 80-120 20 80-120 100.0 20 Chromium 97.19 97 202020 24.45 98 80-120 Cobalt 25.00 Copper Lead 12.06 97.37 12.50 97 80-120 80-120 100.0 97 20.00 Molybdenum 20.12 101 80-120 20 Nickel 24.94 100 80-120 49.31 9.101 Selenium 50.00 99 80-120 20 20 20 10.00 91 80-120 Silver 99 80-120 Thallium 50,00 49.37 20 20 Vanadium 25,00 24.45 98 80-120 98 80-120 Zinc 25.00 24.41

.....



Batch QC Report

Californi	a Title 26 Meta	15
Lab #: 182724	Location:	Ft Bragg-Site Assessment
Client: Acton Mickelson Environmental	Prep:	EPA 3050B
Project#: 16017.08	Analysis:	EPA 6010B
Field ID: ZZZZZZZZZ	Batch#:	107417
MSS Lab ID: 182795-013	Sampled:	10/22/05
Matrix: Soil	Received:	10/27/05
Units: mg/Kg	Prepared:	11/04/05
Basis: as received	Analyzed:	11/04/05
Diln Fac:1.000	-	

	Type:	MS	Lab ID:	QC315734		
	Analyt	MSS Result	Spiked	Result	%REC	limits
	Antimony	1.254	109.9	42.38	37	9-120
	Arsenic	17.77	. 54.95	61.05	79	73-120
	Barium	636.9	109.9	169.8	-425 NM	54-137
	Beryllium	0.5260	2.747	3.11.7	94	79-120
	Cadmium	1.407	10.99	11.53	92	72-120
	Chromium	29.40	· 109.9	186.7	143 *	65-120
	Cobalt	9.228	27.47	39.37	110	63-120
	Copper	35.86	13.74	113.6	566 *	52-145
	Lead	22.33	109.9	211.2	172 *	57-125
1	Molybdenum	0.7217	21.98	20.51	90	69-120
	Nickel	23,50	27.47	1,06.4	302 *	47-135
	Selenium	0.4135	54,95	50.04	90	68-120
	Silver	<0.03636	10,99	8.178	74 *	77-120
7	hallium	0.1889	54.95	47.20	86	68-120
Ť.	anadium	43.48	27.47	93.20	181 *	51-137
ेंद	inc		27.47	182.2	_177 NM	43-141

Type:	MSD	Lab ID	: QC319	5735			
	Analyte	Spiked	Result	*REC	Limits	RPD	bim
Antimony		85.47	30.27	34	9-120	9	22
Arsenic		42.74	48.10	71 *	73-120	5	20
Barium		85.47	134.3	-588 NM	54-137	20	20
Beryllium		2.137	2.423	8,9	79-120	5	20
Cadmium		8.547	9,102	90	72-120	2	20
Chromium		85.47	160.7	154 *	65-120	4	20
Cobalt		21.37	32.70	110	63-120	0	20
Copper		10.68	100.8	608 *	52-145	6	20
Lead		85.47	119.0	113	57-125	37 *	20
Molybdenum		17.09	15.28	85	69-120	5	20
Nickel		21.37	123.9	470 *	47-135	28 *	20
Selenium		42.74	38.52	89	68-120	1	20
Silver		8.547	6,110	71 *	77-120	4	20
Thallium		42.74	35.42	82	68-120	4	20
Vanadium		21.37	83.19	186 *	51-137	2	20
Zinc		21.37	237.3	485 NM	43-141	30 *	20

# Value outside of QC limits; see narrative
# Not Meaningful: Sample concentration > 4X spike concentration
RPD= Relative Percent Difference
Page 1 of 1



#### Heitmeyer, Douglas A.

From: Sent: To: Subject: Heitmeyer, Douglas A. Friday, July 14, 2006 2:55 PM Raming, Julie B.; 'Michael A. Acton' FW: ashvolume12.xls

ashvolume 2.xls (17 KI

et me start by saying this project is very confusing due to conflicting data. The monitoring reports show that we amended 5 acres at McGuire's ranch in February 1993 and 11 more acres in March of 1993. These same reports show that we didn't haul any ash to McGuire's until April of 1993.We also have a color coded map that shows and area at McGuire's that was amended in 1992.

Anyway in 1993 we amended total acres: 5 in Feb. 11 in March 25 in August, 10 in Sept. and 10 in Oct.

1994: 20 acres in July and 2 in August. EASTENN END OF FIELDS # 5 5 # 4

1995: 15 acres in Sept and 15 acres in Oct. Remainder of #5, Fueriou #4 Server F to

1996: 5 acres in July, 5 acres August, 5 acres Sept. Provident 2

1997: 10 acres August and 5 acres Sept. REMANDER of #6

1998: 12 acres in Oct. Scuttern end of #12

1999: 10 acres in Sept. Finished #12 Strate # 13

2000 5 acres in August. MC57 of #13

2001:10 acres in August. Finisited #13 parrent 14

2002: 5 acres in August. Finished mest of #14

We do have some maps that show where the amending ended on the East side of the road in 1997 and where it began on the West side in 1998. This will help us in determining where the last 4 years of material went.

----Original Message----From: Heitmeyer, Douglas A. Sent: Friday, July 14, 2006 2:34 PM To: Heitmeyer, Douglas A. Subject: ashvolume12.xls

early 576 12 vie 14 late 14 reference - 16 and/or reference - 16 and/or



~	1986	1987	1988	1989	1990	1991	1992	1993	
January		3480	1840	1640	2600	980	0	0	· · ·
February	3060	3480	1380	1640	220	1600	0	0	
March	4240	3680	1820	1700	1360	980	0	0	
April	4420	3740	1400	1140	1380	1000	0	3720	
May	3500	3980	1700	900	2540	1300	. 0	3586	
June	2520	3420	1740	1520	3640	1620	0	925	
July	2020	3440	2220	1180	1440	1860	0	695	
August	3060	2780	1920	1460	1700	1480	0	790	
Septembe	3460	2960	1500	1400	2340	1260	0	475	
Öctober	4040	3200	1860	1500	2060	1003	0	1860	
Novembe	3040	2720	2780	1380	1780	0	0	2485	
December	3080	2160	2780	1460	1120	0	0	1870	
Total	36440	39040	22940	16920	22180	13083	0	16406	

(

•

-

	ſ	1994	1995	1996	1997	1998	1999	2000	2001	2002
$\cap$	L							2000		
<b>V</b>	January [	1240	450	450	3820	1370	1150	1030	990	0
	February	1510	460	2760	1946	730	1050	1290	990	120
	March	1011	30	2230	1920	1140	1090	1390	1140	420
	April	1040	310	1840	3190	2020	830	740	450	420
	May [	910	1010	2369	2480	2050	1270	900	1140	570
	June [	1060	1660	2721	2100	1980	830	1470	1320	600
	July [	790	2220	2442	1750	1730	510	780	1410	420
	August	440	2890	1871	1840	1440	660	300	1110	630
	Septembe	207	1780	2468	1840	740	1750	400	1020	0
	October	710	1430	1763	1840	560	830	960	270	0
	Novembe	590	2670	1629	1840	50	630	870	210	0
	December	1060	1080	2295	1440	0	700	930	0	0
	_	9328	15540	24388	22186	12440	10150	10030	9060	3180

•